Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

Related tags

Deep Learninggen-vlkt
Overview

GEN-VLKT

Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection".

Contributed by Yue Liao*, Aixi Zhang*, Miao Lu, Yongliang Wang, Xiaobo Li and Si Liu.

Installation

Installl the dependencies.

pip install -r requirements.txt

Clone and build CLIP.

git clone https://github.com/openai/CLIP.git && cd CLIP && python setup.py develop && cd ..

Data preparation

HICO-DET

HICO-DET dataset can be downloaded here. After finishing downloading, unpack the tarball (hico_20160224_det.tar.gz) to the data directory.

Instead of using the original annotations files, we use the annotation files provided by the PPDM authors. The annotation files can be downloaded from here. The downloaded annotation files have to be placed as follows.

data
 └─ hico_20160224_det
     |─ annotations
     |   |─ trainval_hico.json
     |   |─ test_hico.json
     |   └─ corre_hico.npy
     :

V-COCO

First clone the repository of V-COCO from here, and then follow the instruction to generate the file instances_vcoco_all_2014.json. Next, download the prior file prior.pickle from here. Place the files and make directories as follows.

GEN-VLKT
 |─ data
 │   └─ v-coco
 |       |─ data
 |       |   |─ instances_vcoco_all_2014.json
 |       |   :
 |       |─ prior.pickle
 |       |─ images
 |       |   |─ train2014
 |       |   |   |─ COCO_train2014_000000000009.jpg
 |       |   |   :
 |       |   └─ val2014
 |       |       |─ COCO_val2014_000000000042.jpg
 |       |       :
 |       |─ annotations
 :       :

For our implementation, the annotation file have to be converted to the HOIA format. The conversion can be conducted as follows.

PYTHONPATH=data/v-coco \
        python convert_vcoco_annotations.py \
        --load_path data/v-coco/data \
        --prior_path data/v-coco/prior.pickle \
        --save_path data/v-coco/annotations

Note that only Python2 can be used for this conversion because vsrl_utils.py in the v-coco repository shows a error with Python3.

V-COCO annotations with the HOIA format, corre_vcoco.npy, test_vcoco.json, and trainval_vcoco.json will be generated to annotations directory.

Pre-trained model

Download the pretrained model of DETR detector for ResNet50, and put it to the params directory.

python ./tools/convert_parameters.py \
        --load_path params/detr-r50-e632da11.pth \
        --save_path params/detr-r50-pre-2branch-hico.pth \
        --num_queries 64

python ./tools/convert_parameters.py \
        --load_path params/detr-r50-e632da11.pth \
        --save_path params/detr-r50-pre-2branch-vcoco.pth \
        --dataset vcoco \
        --num_queries 64

Training

After the preparation, you can start training with the following commands. The whole training is split into two steps: GEN-VLKT base model training and dynamic re-weighting training. The trainings of GEN-VLKT-S for HICO-DET and V-COCO are shown as follows.

HICO-DET

sh ./config/hico_s.sh

V-COCO

sh ./configs/vcoco_s.sh

Zero-shot

sh ./configs/hico_s_zs_nf_uc.sh

Evaluation

HICO-DET

You can conduct the evaluation with trained parameters for HICO-DET as follows.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained pretrained/hico_gen_vlkt_s.pth \
        --dataset_file hico \
        --hoi_path data/hico_20160224_det \
        --num_obj_classes 80 \
        --num_verb_classes 117 \
        --backbone resnet50 \
        --num_queries 64 \
        --dec_layers 3 \
        --eval \
        --with_clip_label \
        --with_obj_clip_label \
        --use_nms_filter

For the official evaluation (reported in paper), you need to covert the prediction file to a official prediction format following this file, and then follow PPDM evaluation steps.

V-COCO

Firstly, you need the add the following main function to the vsrl_eval.py in data/v-coco.

if __name__ == '__main__':
  import sys

  vsrl_annot_file = 'data/vcoco/vcoco_test.json'
  coco_file = 'data/instances_vcoco_all_2014.json'
  split_file = 'data/splits/vcoco_test.ids'

  vcocoeval = VCOCOeval(vsrl_annot_file, coco_file, split_file)

  det_file = sys.argv[1]
  vcocoeval._do_eval(det_file, ovr_thresh=0.5)

Next, for the official evaluation of V-COCO, a pickle file of detection results have to be generated. You can generate the file with the following command. and then evaluate it as follows.

python generate_vcoco_official.py \
        --param_path pretrained/VCOCO_GEN_VLKT_S.pth \
        --save_path vcoco.pickle \
        --hoi_path data/v-coco \
        --num_queries 64 \
        --dec_layers 3 \
        --use_nms_filter \
        --with_clip_label \
        --with_obj_clip_label

cd data/v-coco
python vsrl_eval.py vcoco.pickle

Zero-shot

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained pretrained/hico_gen_vlkt_s.pth \
        --dataset_file hico \
        --hoi_path data/hico_20160224_det \
        --num_obj_classes 80 \
        --num_verb_classes 117 \
        --backbone resnet50 \
        --num_queries 64 \
        --dec_layers 3 \
        --eval \
        --with_clip_label \
        --with_obj_clip_label \
        --use_nms_filter \
        --zero_shot_type rare_first \
        --del_unseen

Regular HOI Detection Results

HICO-DET

Full (D) Rare (D) Non-rare (D) Full(KO) Rare (KO) Non-rare (KO) Download Conifg
GEN-VLKT-S (R50) 33.75 29.25 35.10 36.78 32.75 37.99 model config
GEN-VLKT-M* (R101) 34.63 30.04 36.01 37.97 33.72 39.24 model config
GEN-VLKT-L (R101) 34.95 31.18 36.08 38.22 34.36 39.37 model config

D: Default, KO: Known object, *: The original model is lost and the provided checkpoint performance is slightly different from the paper reported.

V-COCO

Scenario 1 Scenario 2 Download Config
GEN-VLKT-S (R50) 62.41 64.46 model config
GEN-VLKT-M (R101) 63.28 65.58 model config
GEN-VLKT-L (R101) 63.58 65.93 model config

Zero-shot HOI Detection Results

Type Unseen Seen Full Download Conifg
GEN-VLKT-S RF-UC 21.36 32.91 30.56 model config
GEN-VLKT-S NF-UC 25.05 23.38 23.71 model config
GEN-VLKT-S UO 10.51 28.92 25.63 model config
GEN-VLKT-S UV 20.96 30.23 28.74 model config

Citation

Please consider citing our paper if it helps your research.

@inproceedings{liao2022genvlkt,
  title={GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection},
  author={Yue Liao, Aixi Zhang, Miao Lu, Yongliang Wang, Xiaobo Li, Si Liu},
  booktitle={CVPR},
  year={2022}
}

License

GEN-VLKT is released under the MIT license. See LICENSE for additional details.

Acknowledge

Some of the codes are built upon PPDM, DETR, QPIC and CDN. Thanks them for their great works!

Owner
Yue Liao
PhD candidate at Beihang University
Yue Liao
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022