A library that can print Python objects in human readable format

Overview

objprint

build coverage pypi support-version license commit

A library that can print Python objects in human readable format

Install

pip install objprint

Usage

op

Use op() (or objprint()) to print objects.

from objprint import op

class Position:
    def __init__(self, x, y):
        self.x = x
        self.y = y

class Player:
    def __init__(self):
        self.name = "Alice"
        self.age = 18
        self.items = ["axe", "armor"]
        self.coins = {"gold": 1, "silver": 33, "bronze": 57}
        self.position = Position(3, 5)

op(Player())
<Player 0x7fe44e1e3070
  .age = 18,
  .coins = {'bronze': 57, 'gold': 1, 'silver': 33},
  .items = ['axe', 'armor'],
  .name = 'Alice',
  .position = <Position
    .x = 3,
    .y = 5
  >
>

You can print multiple objects just like print, except op will print them in separate lines

op([1, 2], {'a': 1})
[1, 2]
{'a': 1}

add_objprint

If you want to use print() to print your object, you can also use the class decorator add_objprint to add __str__ method for your class.

from objprint import add_objprint

class Position:
    def __init__(self, x, y):
        self.x = x
        self.y = y

@add_objprint
class Player:
    def __init__(self):
        self.name = "Alice"
        self.age = 18
        self.items = ["axe", "armor"]
        self.coins = {"gold": 1, "silver": 33, "bronze": 57}
        self.position = Position(3, 5)

# This will print the same thing as above
print(Player())

objstr

If you want the str representation of the object, instead of printing it on the screen, you can use objstr function

from objprint import objstr

s = objstr(my_object)

objjson

objprint supports print objects to json to make it easier to serialze an object.

objjson returns a jsonifiable object that can be dumped with json.dumps

from objprint import objjson

json_obj = objjson(Player())

print(json.dumps(json_obj, indent=2))
{
  ".type": "Player",
  "name": "Alice",
  "age": 18,
  "items": [
    "axe",
    "armor"
  ],
  "coins": {
    "gold": 1,
    "silver": 33,
    "bronze": 57
  },
  "position": {
    ".type": "Position",
    "x": 3,
    "y": 5
  }
}

You can use op to print in json format directly with format="json". You can pass in argument for json.dumps

op(Player(), format="json", indent=2)

add_objprint also works with format="json"

@add_objprint(format="json", indent=2)
class Player:
    pass

include/exclude attributes

You can include/exclude attributes using regular expression so objprint will only print out the attributes you are interested in.

op(Player(), include=["name"])
<Player
  .name = 'Alice'
>
op(Player(), exclude=[".*s"])
<Player 0x7fe44e1e3070
  .name = 'Alice',
  .age = 18,
  .position = <Position
    .x = 3,
    .y = 5
  >
>

If you specify both include and exclude, it will do a inclusive check first, then filter out the attributes that match exclusive check.

include and exclude arguments work on objprint, objstr and @add_objprint.

config

objprint formats the output based on some configs

  • config_name(default_value) - this config's explanation
  • depth(100) - how deep objprint goes into nested data structures
  • indent(2) - the indentation
  • width(80) - the maximum width a data structure will be presented as a single line
  • elements(-1) - the maximum number of elements that will be displayed, -1 means no restriction
  • color(True) - whether to use colored scheme
  • skip_recursion(True) - whether skip printing recursive data, which would cause infinite recursion without depth constraint
  • honor_existing(True) - whether to use the existing user defined __repr__ or __str__ method

You can set the configs globally using config function

from objprint import config

config(indent=4)

Or you can do a one time config by passing the arguments into objprint function

from objprint import op

op(var, indent=4)

install

Maybe you don't want to import op in every single file that you want to use. You can use install to make it globally accessible

from objprint import install

# Now you can use op() in any file
install()

# You can specify a name for objprint()
install("my_print")
my_print(my_object)

Bugs/Requests

Please send bug reports and feature requests through github issue tracker.

License

Copyright Tian Gao, 2020-2021.

Distributed under the terms of the Apache 2.0 license.

Comments
  • 在面对继承自pydantic里BaseModel的实例时无法得到预期的输出

    在面对继承自pydantic里BaseModel的实例时无法得到预期的输出

    如题

    from pydantic import BaseModel
    from objprint import op
    
    
    class pyt_class(BaseModel):
        x: int
        y: int
    
    
    obj_test = pyt_class(x=0, y=1)
    
    op(obj_test)
    print(obj_test)
    

    他打印:

    x=0 y=1
    x=0 y=1
    

    希望后续更新能够支持! (B站码农高天的视频我是期期都看,期期都三连)

    opened by Sclock 3
  • Also print the actual expression whose value is being printed

    Also print the actual expression whose value is being printed

    The https://github.com/gruns/icecream lib has an useful feature where it also prints the expression. Please see the following example:

    d = {'key': {1: 'one'}}
    ic(d['key'][1])
    
    class klass():
        attr = 'yep'
    ic(klass.attr)
    

    It prints:

    ic| d['key'][1]: 'one'
    ic| klass.attr: 'yep'
    

    As you can see icecream lib also prints the expression d['key'][1]. Is it possible to add this feature? This is the only feature holding me back from switching to objprint.

    opened by riyadparvez 3
  • Duplicate output when op() argument wasn't an object.

    Duplicate output when op() argument wasn't an object.

    import hashlib op(hashlib) <module 'hashlib' from 'C:\Users\guojoan\AppData\Local\Programs\Python\Python310\lib\hashlib.py'> <module 'hashlib' from 'C:\Users\guojoan\AppData\Local\Programs\Python\Python310\lib\hashlib.py'>

    a = [] a.append(a) op(a) [[ ... ]] [[...]]

    and so on

    opened by CokeStudios 2
  • type 类创建问题

    type 类创建问题

    通过type 构建的 class 通过 op 正确打印,这个feature 能否实现?

    from objprint import op
    
    class Action:
        pass
    
    def Category(label):
        return type("MCategory", (Action,), {"label": label,
                                            "__type__": "category"})
    
    
    class ECategory(Action):
        def __init__(self,label):
            self.label = label
            self.__type__ = 'category'
    
    
    
    mm = Category('test')
    nn = ECategory('test')
    op(mm)
    op(nn)
    
    >> <class '__main__.MCategory'>
    >> <UCategory 0x1f2da7b2b00
    >>   .label = 'test'
    >> >
    
    
    opened by wuqingjing2010 2
  • 如何实现“增量”打印?

    如何实现“增量”打印?

    您好!我正在使用objprint跟踪迭代过程,代码大致如下:

    for i in range(i_max):
        obj.step()
        op(obj)
    

    已知obj中有些变量在执行step后是不发生改变的,在第二次到最后一次调用op时,是否能够不打印这些变量?也就是只打印发生了变化的变量?

    opened by Saltsmart 2
  • weird escaped characters in jupyter notebook's output

    weird escaped characters in jupyter notebook's output

    I used pyreadstat module to read a simple SAS file. the code goes like this in jupyter notebook

    import pyreadstat as pyrs
    from objprint import op
    
    sas_path = './test_sas/foo.sas7bdat'
    df, meta = pyrs.read_sas7bdat(sas_path, metadataonly=True)
    # just wanted to check out what meta contains 
    op(meta)
    

    the brief output of current cell seems normal

    Output exceeds the [size limit]. Open the full output data[ in a text editor]
    <metadata_container 0x1bcf4bfa3e0
      .column_labels = [
        'projectid',
        'project',
    ...
        'project': '$'
      },
      .variable_value_labels = {}
    >
    <pyreadstat._readstat_parser.metadata_container at 0x1bcf4bfa3e0>
    

    but after I clicked "in a text editor", the first lines look like this:

    <metadata_container 0x1bcf4bfa3e0
      .column_labels = [
        'projectid',
        'project',
    

    the weird characters actually look like small suqares contains 3 small letters ESC in the text editor.

    opened by Asuralf 2
  • 在面对Enum对象时,输出的结果不符合预期。

    在面对Enum对象时,输出的结果不符合预期。

    测试代码:

    from enum import Enum
    from objprint import op,add_objprint
    
    class temp_a(Enum):
        a = 1
    
    @add_objprint
    class temp_b(Enum):
        b = 1
    
    print("temp_a:\n",temp_a,"\n")
    
    print("temp_a.a:\n",temp_a.a,"\n")
    
    print("op_temp_a:")
    op(temp_a)
    print("\n")
    
    print("op_temp_a.a:")
    op(temp_a.a)
    print("\n")
    
    print("================================================================\n")
    
    print("temp_b:\n",temp_b,"\n")
    
    print("temp_b.b:\n",temp_b.b,"\n")
    
    print("op_temp_b:")
    op(temp_b)
    print("\n")
    
    print("op_temp_b.b:")
    op(temp_b.b)
    print("\n")
    

    输出:

    temp_a:
     <enum 'temp_a'> 
    
    temp_a.a:
     temp_a.a
    
    op_temp_a:
    <enum 'temp_a'>
    
    
    op_temp_a.a:
    temp_a.a
    
    
    ================================================================
    
    temp_b:
     <enum 'temp_b'>
    
    temp_b.b:
     <temp_b 0x24a740c2ee0
      .__objclass__ = <enum 'temp_b'>,
      ._name_ = 'b',
      ._value_ = 1
    >
    
    op_temp_b:
    <enum 'temp_b'>
    
    
    op_temp_b.b:
    <temp_b 0x24a740c2ee0
      .__objclass__ = <enum 'temp_b'>,
      ._name_ = 'b',
      ._value_ = 1
    >
    

    符合直觉的结果应该是:

    class temp_a(Enum):
        a = 1
    op(temp_a)
    

    输出:

     <temp_a 0xFFFFFFFF
      .__objclass__ = <enum 'temp_a'>,
      .temp_a.a = < xxxxxxx
          ._name_ = 'b',
          ._value_ = 1
      >
    >
    
    opened by Sclock 2
  • 大佬,objprint可以打印出函数的内容吗?类似于js中console.log()方法。

    大佬,objprint可以打印出函数的内容吗?类似于js中console.log()方法。

    //JavaScript function ad(a, b) {

    return a + b;
    

    }

    console.log(ad.toString())

    //输出 // function ad(a, b) { // // return a + b; // }

    //python def ad(a,b): return a+b print(ad)

    输出

    <function ad at 0x000002511B318550>

    opened by xuxiaobo-bobo 1
  • Change the output order of line number and arg name

    Change the output order of line number and arg name

    For the following example:

    from objprint import config, install, objjson, op
    
    config(line_number=True)
    config(arg_name=True)
    
    x = 1
    op(x)
    

    This is the output right now:

    x:
    <module> (/path/to/objprint-test.py:7)
    1
    

    What I think more intuitive is argument name followed by the value and the file and line number at the top. In this particular case:

    <module> (/path/to/objprint-test.py:7)
    x:
    1
    

    Any thoughts?

    opened by riyadparvez 1
  • question: how to use install()

    question: how to use install()

    I created two python file to play with the install() feature:

    temp1.py:

    from objprint import op, install
    
    # Now you can use op() in any file
    install()
    

    temp2.py:

    op("hello")
    

    But run the temp2.py, it throws error : NameError: name 'op' is not defined What is the correct usage of install() ? Thanks !

    opened by wwdok 1
  • 在打印链表的时候结构不是很清晰

    在打印链表的时候结构不是很清晰

    打印链表会输出

    <Node 0x18136a4bd30
      .next = <Node 0x18136a4b3d0
        .next = <Node 0x18136dd5750
          .next = <Node 0x18136dd5930
            .next = <Node 0x18136dd5810
              .next = <Node 0x18136dd5870
                .next = None,
                .value = 'node_5'
              >,
              .value = 'node_4'
            >,
            .value = 'node_3'
          >,
          .value = 'node_2'
        >,
        .value = 'node_1'
      >,
      .value = 'Head'
    >
    

    可以考虑在打印属性为对象的属性的时候缩进幅度大一些

    <Node 0x18136a4bd30
        .next = <Node 0x18136a4b3d0
                .next = <Node 0x18136dd5750
                        .next = <Node 0x18136dd5930
                                    .next = <Node 0x18136dd5810
                                            .next = <Node 0x18136dd5870
                                                    .next = None,
                                                    .value = 'node_5'
                                            >,
                                            .value = 'node_4'
                                    >,
                                    .value = 'node_3'
                        >,
                        .value = 'node_2'
                >,
                .value = 'node_1'
         >,
         .value = 'Head'
    >
    

    或者结构修改一下

    <Node 0x18136a4bd30 ->  .next = <Node 0x18136a4b3d0 ->  .next = <Node 0x18136dd5750 ->  .next = <Node 0x18136dd5930 ->  .next = <Node 0x18136dd5810 ->  .next = <Node 0x18136dd5870 ->  .next = None,
                                                                                                                                                                                            .value = 'node_5'
                                                                                                                                                                                            >,         
                                                                                                                                                            .value = 'node_4'
                                                                                                                                                            >,
                                                                                                                            .value = 'node_3'
                                                                                                                            >,
                                                                                            .value = 'node_2'
                                                                                            >,
                                                            .value = 'node_1'
                                                            >,
                            .value = 'Head'
                            >
    

    简单的建议,希望能优化一下!

    opened by Sclock 1
  • pydantic.BaseModel 对象无法正确打印

    pydantic.BaseModel 对象无法正确打印

    我在使用 pydantic + objprint,打印对象使用了 #52 中的方法,但程序在 op 处阻塞住。

    from objprint import op
    from pydantic import BaseModel
    
    
    class A(BaseModel):
        a: int
    
    
    obj = A(a=1)
    op(obj, honor_existing=False)
    
    opened by Eric-fuyc 2
  • Detect repl for returning objects

    Detect repl for returning objects

    Now op() returns the object it prints to make calling chain possible. But in repl, that will print two instances. We should fix that for a better user experience.

    opened by gaogaotiantian 0
Releases(0.2.2)
Owner
Author of VizTracer, watchpoints and objprint
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

VoxHRNet This is the official implementation of the following paper: Whole Brain Segmentation with Full Volume Neural Network Yeshu Li, Jonathan Cui,

Microsoft 12 Nov 24, 2022