A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

Overview

LP-Option-Hedging

Description

A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging impermanent loss, which may allow arbitrage. Initially written in May for personal use. Optimized by 30x with Numba. May or may not add English annotations.

Utility

The code may plot PnL graphs for leveraged LP (liquidity provider) positions on constant product Automated Market Maker (AMM), like those on Alpha Homora and Alpaca Finance. It can perform a variational search for the optimal combination of call options and put options which minimizes impermanent loss in leveraged LP. It then plots the PnL graphs for leveraged LP, the option combination with sizes and strike prices, and the combination of leveraged LP and options.

The type of leveraged LP can be borrowing USD stablecoins, borrowing cryptos like BTC, ETH, and a delta neutral combination of the two.

Parameters that need to be manually specified:

  • type of leveraged LP
  • leverage of LP
  • max LTV at liquidation
  • APRs on farming
  • annualized volatility, risk-free interest rate, and days to expiration of European options priced by the Black-Scholes model

Background

Providing liquidity on AMM is equivalent to short gamma and long theta, i.e. the LP subjects itself to impermanent loss in exchange for trading fees and liquidity mining rewards. On the other hand, long call and long put have positive gamma and negative theta. By virtue of the Carr–Madan formula, a smooth function of the underlying price, in this case the payoff of leveraged LP, can be replicated by a series of European options at continuous strikes. Hence it is possible to completely hedge leveraged LP with options. In pratice options are not available at any strike. Moreover the volatility is not constant at all strikes due to the volatility smile. Therefore the current program only considers a long call and a long put for hedging.

Disclaimer

The hedging is only approximate and theoretical. The author is not responsible for any loss caused by the use of this program. DYOR.

Reference

期权对冲LP

简介

一个分析杠杆挖矿并寻找最佳期权组合以对冲无常损失的Python程序,写于五月初,经Numba优化。

功能

画出基于恒定乘积AMM的杠杆挖矿的损益曲线,并寻找对冲无常损失的最佳期权组合,画出杠杆LP、期权组合包括张数和行权价及总仓位的损益曲线。

杠杆挖矿的类型包括借U、借币及中性敞口的组合。

需手动输入的参数:

  • 杠杆挖矿类型
  • 杠杆倍数
  • 清算时债务比例
  • 挖矿APR
  • 期权的年化波动率、无风险利率、到期日

声明

程序模拟仅为理论近似,本人不对由此造成的任何损失负责。

Owner
Aureliano
Aureliano
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021