A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

Overview

LP-Option-Hedging

Description

A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging impermanent loss, which may allow arbitrage. Initially written in May for personal use. Optimized by 30x with Numba. May or may not add English annotations.

Utility

The code may plot PnL graphs for leveraged LP (liquidity provider) positions on constant product Automated Market Maker (AMM), like those on Alpha Homora and Alpaca Finance. It can perform a variational search for the optimal combination of call options and put options which minimizes impermanent loss in leveraged LP. It then plots the PnL graphs for leveraged LP, the option combination with sizes and strike prices, and the combination of leveraged LP and options.

The type of leveraged LP can be borrowing USD stablecoins, borrowing cryptos like BTC, ETH, and a delta neutral combination of the two.

Parameters that need to be manually specified:

  • type of leveraged LP
  • leverage of LP
  • max LTV at liquidation
  • APRs on farming
  • annualized volatility, risk-free interest rate, and days to expiration of European options priced by the Black-Scholes model

Background

Providing liquidity on AMM is equivalent to short gamma and long theta, i.e. the LP subjects itself to impermanent loss in exchange for trading fees and liquidity mining rewards. On the other hand, long call and long put have positive gamma and negative theta. By virtue of the Carr–Madan formula, a smooth function of the underlying price, in this case the payoff of leveraged LP, can be replicated by a series of European options at continuous strikes. Hence it is possible to completely hedge leveraged LP with options. In pratice options are not available at any strike. Moreover the volatility is not constant at all strikes due to the volatility smile. Therefore the current program only considers a long call and a long put for hedging.

Disclaimer

The hedging is only approximate and theoretical. The author is not responsible for any loss caused by the use of this program. DYOR.

Reference

期权对冲LP

简介

一个分析杠杆挖矿并寻找最佳期权组合以对冲无常损失的Python程序,写于五月初,经Numba优化。

功能

画出基于恒定乘积AMM的杠杆挖矿的损益曲线,并寻找对冲无常损失的最佳期权组合,画出杠杆LP、期权组合包括张数和行权价及总仓位的损益曲线。

杠杆挖矿的类型包括借U、借币及中性敞口的组合。

需手动输入的参数:

  • 杠杆挖矿类型
  • 杠杆倍数
  • 清算时债务比例
  • 挖矿APR
  • 期权的年化波动率、无风险利率、到期日

声明

程序模拟仅为理论近似,本人不对由此造成的任何损失负责。

Owner
Aureliano
Aureliano
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022