Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

Related tags

Deep LearningNDQ
Overview

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization

Note

This codebase accompanies paper Learning Nearly Decomposable Value Functions with Communication Minimization, and is based on PyMARL and SMAC codebases which are open-sourced.

The implementation of the following methods can also be found in this codebase, which are finished by the authors of PyMARL:

Build the Dockerfile using

cd docker
bash build.sh

Set up StarCraft II and SMAC:

bash install_sc2.sh

This will download SC2 into the 3rdparty folder and copy the maps necessary to run over.

The requirements.txt file can be used to install the necessary packages into a virtual environment (not recomended).

Run an experiment

The following command train NDQ on the didactic task hallway.

python3 src/main.py 
--config=categorical_qmix
--env-config=join1
with
env_args.n_agents=2
env_args.state_numbers=[6,6]
obs_last_action=False
comm_embed_dim=3
c_beta=0.1
comm_beta=1e-2
comm_entropy_beta=0.
batch_size_run=16
t_max=2e7
local_results_path=$DATA_PATH
is_cur_mu=True
is_rank_cut_mu=True
runner="parallel_x"
test_interval=100000

The config files act as defaults for an algorithm or environment.

They are all located in src/config. --config refers to the config files in src/config/algs --env-config refers to the config files in src/config/envs

To train NDQ on SC2 tasks, run the following command:

--config=categorical_qmix
--env-config=sc2
with
env_args.map_name=bane_vs_hM
env_args.sight_range=2
env_args.shoot_range=2
env_args.obs_all_health=False
env_args.obs_enemy_health=False
comm_embed_dim=3
c_beta=0.1
comm_beta=0.0001
comm_entropy_beta=0.0
batch_size_run=16
runner="parallel_x"

SMAC maps can be found in src/smac_plus/sc2_maps/.

All results will be stored in the Results folder.

Saving and loading learnt models

Saving models

You can save the learnt models to disk by setting save_model = True, which is set to False by default. The frequency of saving models can be adjusted using save_model_interval configuration. Models will be saved in the result directory, under the folder called models. The directory corresponding each run will contain models saved throughout the experiment, each within a folder corresponding to the number of timesteps passed since starting the learning process.

Loading models

Learnt models can be loaded using the checkpoint_path parameter, after which the learning will proceed from the corresponding timestep.

Watching StarCraft II replays

save_replay option allows saving replays of models which are loaded using checkpoint_path. Once the model is successfully loaded, test_nepisode number of episodes are run on the test mode and a .SC2Replay file is saved in the Replay directory of StarCraft II. Please make sure to use the episode runner if you wish to save a replay, i.e., runner=episode. The name of the saved replay file starts with the given env_args.save_replay_prefix (map_name if empty), followed by the current timestamp.

The saved replays can be watched by double-clicking on them or using the following command:

python -m pysc2.bin.play --norender --rgb_minimap_size 0 --replay NAME.SC2Replay

Note: Replays cannot be watched using the Linux version of StarCraft II. Please use either the Mac or Windows version of the StarCraft II client.

a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022