From a body shape, infer the anatomic skeleton.

Related tags

Deep LearningOSSO
Overview

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022)

This repository contains the official implementation of the skeleton inference from:

OSSO: Obtaining Skeletal Shape from Outside
Marilyn Keller, Silvia Zuffi, Michael J. Black and Sergi Pujades
Full paper | Project website

Given a body shape with SMPL or STAR topology (in blue), we infer the underlying skeleton (in yellow). teaser

Installation

Please follow the installation instruction in installation.md to setup all the required packages and models.

Run skeleton inference

The skeleton can be inferred either from a SMPL or STAR mesh.

python main.py  --mesh_input data/demo/body_female.ply --gender female -D -v

The final infered skeleton will be saved in the out folder and the intermediate meshes in out/tmp.

Citation

If you find this model & software useful in your research, please consider citing:

@inproceedings{Keller:CVPR:2022,
  title = {{OSSO}: Obtaining Skeletal Shape from Outside},
  author = {Keller, Marilyn and Zuffi, Silvia and Black, Michael J. and Pujades, Sergi},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2022},
  month_numeric = {6}}

Acknowledgements

OSSO uses the Stitched Puppet by Silvia Zuffi and Michael J. Black, and the body model STAR by Ahmed Osman et al. The model was applied on AGORA (Priyanka Patel et al.) for demonstration.

This research has been conducted using the UK Biobank Resource under the Approved Project ID 51951. The authors thank the International Max Planck Research School for Intelligent Systems for supporting Marilyn Keller. Sergi Pujades’ work was funded by the ANR SEMBA project. We thank Anatoscope (www.anatoscope.com) for the initial skeleton mesh and useful discussions.

We also thank A. A. Osman for his helpful advice on body models, P. Patel for helping test OSSO on AGORA, T. McConnel, Y. Xiu, S. Tripathi and T. Yin for helping with the submission and release, and P. Ghosh, J. Tesch, A. Chandrasekaran, V. F. Abrevaya, S. Sanyal, O. Ben-Dov and P. Forte for fruitful discussions, advice and proofreading.

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE.txt file.

Contact

For more questions, please contact [email protected]

For commercial licensing, please contact [email protected]

Owner
Marilyn Keller
I am currently a 3rd-Year CS Ph.D. student, working at Max Planck Institute for Intelligent Systems.
Marilyn Keller
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021