WaveFake: A Data Set to Facilitate Audio DeepFake Detection

Related tags

Deep LearningWaveFake
Overview

WaveFake: A Data Set to Facilitate Audio DeepFake Detection

logo

This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper WaveFake.

Deep generative modeling has the potential to cause significant harm to society. Recognizing this threat, a magnitude of research into detecting so-called "Deepfakes" has emerged. This research most often focuses on the image domain, while studies exploring generated audio signals have - so far - been neglected. In this paper, we aim to narrow this gap. We present a novel data set, for which we collected ten sample sets from six different network architectures, spanning two languages. We analyze the frequency statistics comprehensively, discovering subtle differences between the architectures, specifically among the higher frequencies. Additionally, to facilitate further development of detection methods, we implemented three different classifiers adopted from the signal processing community to give practitioners a baseline to compare against. In a first evaluation, we already discovered significant trade-offs between the different approaches. Neural network-based approaches performed better on average, but more traditional models proved to be more robust.

Dataset & Pre-trained Models

You can find our dataset on zenodo and we also provide pre-trained models.

Setup

You can install all needed dependencies by running:

pip install -r requirements.txt

RawNet2 Model

For consistency, we use the RawNet2 model provided by the ASVSpoof 2021 challenge. Please download the model specifications here and place it under dfadetect/models as raw_net2.py.

Statistics & Plots

To recreate the plots/statistics of the paper, use:

python statistics.py -h

usage: statistics.py [-h] [--amount AMOUNT] [--no-stats] [DATASETS ...]

positional arguments:
  DATASETS              Path to datasets. The first entry is assumed to be the referrence one. Specified as follows 
   
    

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to concider.
  --no-stats, -s        Do not compute stats, only plots.

   

Example

python statistics.py /path/to/reference/data,ReferenceDataName /path/to/generated/data,GeneratedDataName -a 10000

Training models

You can use the training script as follows:

python train_models.py -h

usage: train_models.py [-h] [--amount AMOUNT] [--clusters CLUSTERS] [--batch_size BATCH_SIZE] [--epochs EPOCHS] [--retraining RETRAINING] [--ckpt CKPT] [--use_em] [--raw_net] [--cuda] [--lfcc] [--debug] [--verbose] REAL FAKE

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --batch_size BATCH_SIZE, -b BATCH_SIZE
                        Batch size (default: 8).
  --epochs EPOCHS, -e EPOCHS
                        Epochs (default: 5).
  --retraining RETRAINING, -r RETRAINING
                        Retraining tries (default: 10).
  --ckpt CKPT           Checkpoint directory (default: trained_models).
  --use_em              Use EM version?
  --raw_net             Train raw net version?
  --cuda, -c            Use cuda?
  --lfcc, -l            Use LFCC instead of MFCC?
  --debug, -d           Only use minimal amount of files?
  --verbose, -v         Display debug information?

Example

To train all EM-GMMs use:

python train_models.py /data/LJSpeech-1.1/wavs /data/generated_audio -k 128 -v --use_em --epochs 100

Evaluation

For evaluation you can use the evaluate_models script:

python evaluate_models.p -h

usage: evaluate_models.py [-h] [--output OUTPUT] [--clusters CLUSTERS] [--amount AMOUNT] [--raw_net] [--debug] [--cuda] REAL FAKE MODELS

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.
  MODELS                Directory containing model checkpoints.

optional arguments:
  -h, --help            show this help message and exit
  --output OUTPUT, -o OUTPUT
                        Output file name.
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --raw_net, -r         RawNet models?
  --debug, -d           Only use minimal amount of files?
  --cuda, -c            Use cuda?

Example

python evaluate_models.py /data/LJSpeech-1.1/wavs /data/generated_audio trained_models/lfcc/em

Make sure to move the out-of-distribution models to a seperate directory first!

Attribution

We provide a script to attribute the GMM models:

python attribute.py -h

usage: attribute.py [-h] [--clusters CLUSTERS] [--steps STEPS] [--blur] FILE REAL_MODEL FAKE_MODEL

positional arguments:
  FILE                  Audio sample to attribute.
  REAL_MODEL            Real model to attribute.
  FAKE_MODEL            Fake Model to attribute.

optional arguments:
  -h, --help            show this help message and exit
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --steps STEPS, -m STEPS
                        Amount of steps for integrated gradients.
  --blur, -b            Compute BlurIG instead.

Example

python attribute.py /data/LJSpeech-1.1/wavs/LJ008-0217.wav path/to/real/model.pth path/to/fake/model.pth

BibTeX

When you cite our work feel free to use the following bibtex entry:

@inproceedings{
  frank2021wavefake,
  title={{WaveFake: A Data Set to Facilitate Audio Deepfake Detection}},
  author={Joel Frank and Lea Sch{\"o}nherr},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2021},
}
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
3 Apr 20, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022