Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

Overview

EarthGAN - Earth Mantle Surrogate Modeling

Can a surrogate model of the Earthโ€™s Mantle Convection data set be built such that it can be readily run in a web-browser and produce high-fidelity results? We're trying to do just that through the use of a generative adversarial network -- we call ours EarthGAN. We are in active research.

See how EarthGAN currently works! Open up the Colab notebook and create results from the preliminary generator: Open In Colab

compare_epoch41_rindex165_moll

Progress updates, along with my thoughts, can be found in the devlog. The preliminary results were presented at VIS 2021 as part of the SciVis contest. See the paper on arXiv, here.

This is active research. If you have any thoughts, suggestions, or would like to collaborate, please reach out! You can also post questions/ideas in the discussions section.

Source code arXiv

Current Approach

We're leveraging the excellent work of Li et al. who have implemented a GAN for creating super-resolution cosmological simulations. The general method is in their map2map repository. We've used their GAN implementation as it works on 3D data. Please cite their work if you find it useful!

The current approach is based on the StyleGAN2 model. In addition, a conditional-GAN (cGAN) is used to produce results that are partially deterministic.

Setup

Works best if you are in a HPC environment (I used Compute Canada). Also tested locally in linux (MacOS should also work). If you run windows you'll have to do much of the environment setup and data download/preprocessing manually.

To reproduce data pipeline and begin training: *

  1. Clone this repo - clone https://github.com/tvhahn/EarthGAN.git

  2. Create virtual environment. Assumes that Conda is installed when on a local computer.

    • HPC: make create_environment will detect HPC environment and automatically create environment from make_hpc_venv.sh. Tested on Compute Canada. Modify make_hpc_venv.sh for your own HPC cluster.

    • Linux/MacOS: use command from Makefile - `make create_environment

  3. Download raw data.

    • HPC: use make download. Will automatically detect HPC environment.

    • Linux/MacOS: use make download. Will automatically download to appropriate data/raw directory.

  4. Extract raw data.

    • HPC: use make download. Will automatically detect HPC environment. Again, modify for your HPC cluster.
    • Linux/MacOS: use make extract. Will automatically extract to appropriate data/raw directory.
  5. Ensure virtual environment is activated. conda activate earth

  6. From root directory of EarthGAN, run pip install -e . -- this will give the python scripts access to the src folders.

  7. Create the processed data that will be used for training.

    • HPC: use make data. Will automatically detect HPC environment and create the processed data.

      ๐Ÿ“ Note: You will have to modify the make_hpc_data.sh in the ./bash_scripts/ folder to match the requirements of your HPC environment

    • Linux/MacOS: use make data.

  8. Copy the processed data to the scratch folder if you're on the HPC. Modify copy_processed_data_to_scratch.sh in ./bash_scripts/ folder.

  9. Train!

    • HPC: use make train. Again, modify for your HPC cluster. Not yet optimized for multi-GPU training, so be warned, it will be SLOW!

    • Linux/MacOS: use make train.

* Let me know if you run into any problems! This is still in development.

Project Organization

โ”œโ”€โ”€ Makefile           <- Makefile with commands like `make data` or `make train`
โ”‚
โ”œโ”€โ”€ bash_scripts	   <- Bash scripts used in for training models or setting up environment
โ”‚   โ”œโ”€โ”€ train_model_hpc.sh       <- Bash/SLURM script used to train models on HPC (you will need to	modify this to work on your HPC). Called with `make train`
โ”‚   โ””โ”€โ”€ train_model_local.sh     <- Bash script used to train models locally. Called on with `make train`
โ”‚
โ”œโ”€โ”€ data
โ”‚   โ”œโ”€โ”€ interim        <- Intermediate data before we've applied any scaling.
โ”‚   โ”œโ”€โ”€ processed      <- The final, canonical data sets for modeling.
โ”‚   โ””โ”€โ”€ raw            <- Original data from Earth Mantle Convection simulation.
โ”‚
โ”œโ”€โ”€ models             <- Trained and serialized models, model predictions, or model summaries
โ”‚   โ””โ”€โ”€ interim        <- Interim models and summaries
โ”‚   โ””โ”€โ”€ final          <- Final, cononical models
โ”‚
โ”œโ”€โ”€ notebooks          <- Jupyter notebooks. Generally used for explaining various components
โ”‚   โ”‚                     of the code base.
โ”‚   โ””โ”€โ”€ scratch        <- Rough-draft notebooks, of questionable quality. Be warned!
โ”‚
โ”œโ”€โ”€ references         <- Data dictionaries, manuals, and all other explanatory materials.
โ”‚
โ”œโ”€โ”€ reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
โ”‚   โ””โ”€โ”€ figures        <- Generated graphics and figures to be used in reporting
โ”‚
โ”œโ”€โ”€ requirements.txt   <- Recommend using `make create_environment`. However, can use this file
โ”‚                         for to recreate environment with pip
โ”œโ”€โ”€ envearth.yml       <- Used to create conda environment. Use `make create_environment` when
โ”‚                         on local compute				
โ”‚
โ”œโ”€โ”€ setup.py           <- makes project pip installable (pip install -e .) so src can be imported
โ”œโ”€โ”€ src                <- Source code for use in this project.
โ”‚   โ”œโ”€โ”€ __init__.py    <- Makes src a Python module
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ data           <- Scripts to download or generate data
โ”‚   โ”‚   โ”œโ”€โ”€ make_dataset.py			<- Script for making downsampled data from the original
โ”‚   โ”‚   โ”œโ”€โ”€ data_prep_utils.py		<- Misc functions used in data prep
โ”‚   โ”‚   โ”œโ”€โ”€ download.sh				<- Bash script to download entire Earth Mantle data set
โ”‚   โ”‚   โ”‚  							   (used when `make data` called)
โ”‚   โ”‚   โ””โ”€โ”€download.sh				<- Bash script to extract all Earth Mantle data set files
โ”‚   โ”‚    							   from zip (used when `make extract` called)								   
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ models         <- Scripts to train models and then use trained models to make
โ”‚   โ”‚   โ”‚                 predictions
โ”‚   โ”‚   โ”‚
โ”‚   โ”‚   โ””โ”€โ”€ train_model.py
โ”‚   โ”‚
โ”‚   โ””โ”€โ”€ visualization  <- Scripts to create exploratory and results oriented visualizations
โ”‚       โ””โ”€โ”€ visualize.py
โ”‚
โ”œโ”€โ”€ LICENSE
โ””โ”€โ”€ README.md          <- README describing project.
You might also like...
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (เคšเคฟเคคเฅเคฐ) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

Language Models Can See: Plugging Visual Controls in Text Generation
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

This is my codes that can visualize the psnr image in testing videos.
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection โ€“ A New

A library for answering questions using data you cannot see
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

Code and data for the paper
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

Releases(v1.0.0)
  • v1.0.0(Nov 4, 2021)

Owner
Tim
Data science. Innovation. ML practitioner.
Tim
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

่ฐทไธ‹้›จ 26 Dec 28, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
YOLOPใฎPythonใงใฎONNXๆŽจ่ซ–ใ‚ตใƒณใƒ—ใƒซ

YOLOP-ONNX-Video-Inference-Sample YOLOPใฎPythonใงใฎONNXๆŽจ่ซ–ใ‚ตใƒณใƒ—ใƒซใงใ™ใ€‚ ONNXใƒขใƒ‡ใƒซใฏใ€hustvl/YOLOP/weights ใ‚’ไฝฟ็”จใ—ใฆใ„ใพใ™ใ€‚ Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022