Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

Overview

EarthGAN - Earth Mantle Surrogate Modeling

Can a surrogate model of the Earthโ€™s Mantle Convection data set be built such that it can be readily run in a web-browser and produce high-fidelity results? We're trying to do just that through the use of a generative adversarial network -- we call ours EarthGAN. We are in active research.

See how EarthGAN currently works! Open up the Colab notebook and create results from the preliminary generator: Open In Colab

compare_epoch41_rindex165_moll

Progress updates, along with my thoughts, can be found in the devlog. The preliminary results were presented at VIS 2021 as part of the SciVis contest. See the paper on arXiv, here.

This is active research. If you have any thoughts, suggestions, or would like to collaborate, please reach out! You can also post questions/ideas in the discussions section.

Source code arXiv

Current Approach

We're leveraging the excellent work of Li et al. who have implemented a GAN for creating super-resolution cosmological simulations. The general method is in their map2map repository. We've used their GAN implementation as it works on 3D data. Please cite their work if you find it useful!

The current approach is based on the StyleGAN2 model. In addition, a conditional-GAN (cGAN) is used to produce results that are partially deterministic.

Setup

Works best if you are in a HPC environment (I used Compute Canada). Also tested locally in linux (MacOS should also work). If you run windows you'll have to do much of the environment setup and data download/preprocessing manually.

To reproduce data pipeline and begin training: *

  1. Clone this repo - clone https://github.com/tvhahn/EarthGAN.git

  2. Create virtual environment. Assumes that Conda is installed when on a local computer.

    • HPC: make create_environment will detect HPC environment and automatically create environment from make_hpc_venv.sh. Tested on Compute Canada. Modify make_hpc_venv.sh for your own HPC cluster.

    • Linux/MacOS: use command from Makefile - `make create_environment

  3. Download raw data.

    • HPC: use make download. Will automatically detect HPC environment.

    • Linux/MacOS: use make download. Will automatically download to appropriate data/raw directory.

  4. Extract raw data.

    • HPC: use make download. Will automatically detect HPC environment. Again, modify for your HPC cluster.
    • Linux/MacOS: use make extract. Will automatically extract to appropriate data/raw directory.
  5. Ensure virtual environment is activated. conda activate earth

  6. From root directory of EarthGAN, run pip install -e . -- this will give the python scripts access to the src folders.

  7. Create the processed data that will be used for training.

    • HPC: use make data. Will automatically detect HPC environment and create the processed data.

      ๐Ÿ“ Note: You will have to modify the make_hpc_data.sh in the ./bash_scripts/ folder to match the requirements of your HPC environment

    • Linux/MacOS: use make data.

  8. Copy the processed data to the scratch folder if you're on the HPC. Modify copy_processed_data_to_scratch.sh in ./bash_scripts/ folder.

  9. Train!

    • HPC: use make train. Again, modify for your HPC cluster. Not yet optimized for multi-GPU training, so be warned, it will be SLOW!

    • Linux/MacOS: use make train.

* Let me know if you run into any problems! This is still in development.

Project Organization

โ”œโ”€โ”€ Makefile           <- Makefile with commands like `make data` or `make train`
โ”‚
โ”œโ”€โ”€ bash_scripts	   <- Bash scripts used in for training models or setting up environment
โ”‚   โ”œโ”€โ”€ train_model_hpc.sh       <- Bash/SLURM script used to train models on HPC (you will need to	modify this to work on your HPC). Called with `make train`
โ”‚   โ””โ”€โ”€ train_model_local.sh     <- Bash script used to train models locally. Called on with `make train`
โ”‚
โ”œโ”€โ”€ data
โ”‚   โ”œโ”€โ”€ interim        <- Intermediate data before we've applied any scaling.
โ”‚   โ”œโ”€โ”€ processed      <- The final, canonical data sets for modeling.
โ”‚   โ””โ”€โ”€ raw            <- Original data from Earth Mantle Convection simulation.
โ”‚
โ”œโ”€โ”€ models             <- Trained and serialized models, model predictions, or model summaries
โ”‚   โ””โ”€โ”€ interim        <- Interim models and summaries
โ”‚   โ””โ”€โ”€ final          <- Final, cononical models
โ”‚
โ”œโ”€โ”€ notebooks          <- Jupyter notebooks. Generally used for explaining various components
โ”‚   โ”‚                     of the code base.
โ”‚   โ””โ”€โ”€ scratch        <- Rough-draft notebooks, of questionable quality. Be warned!
โ”‚
โ”œโ”€โ”€ references         <- Data dictionaries, manuals, and all other explanatory materials.
โ”‚
โ”œโ”€โ”€ reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
โ”‚   โ””โ”€โ”€ figures        <- Generated graphics and figures to be used in reporting
โ”‚
โ”œโ”€โ”€ requirements.txt   <- Recommend using `make create_environment`. However, can use this file
โ”‚                         for to recreate environment with pip
โ”œโ”€โ”€ envearth.yml       <- Used to create conda environment. Use `make create_environment` when
โ”‚                         on local compute				
โ”‚
โ”œโ”€โ”€ setup.py           <- makes project pip installable (pip install -e .) so src can be imported
โ”œโ”€โ”€ src                <- Source code for use in this project.
โ”‚   โ”œโ”€โ”€ __init__.py    <- Makes src a Python module
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ data           <- Scripts to download or generate data
โ”‚   โ”‚   โ”œโ”€โ”€ make_dataset.py			<- Script for making downsampled data from the original
โ”‚   โ”‚   โ”œโ”€โ”€ data_prep_utils.py		<- Misc functions used in data prep
โ”‚   โ”‚   โ”œโ”€โ”€ download.sh				<- Bash script to download entire Earth Mantle data set
โ”‚   โ”‚   โ”‚  							   (used when `make data` called)
โ”‚   โ”‚   โ””โ”€โ”€download.sh				<- Bash script to extract all Earth Mantle data set files
โ”‚   โ”‚    							   from zip (used when `make extract` called)								   
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ models         <- Scripts to train models and then use trained models to make
โ”‚   โ”‚   โ”‚                 predictions
โ”‚   โ”‚   โ”‚
โ”‚   โ”‚   โ””โ”€โ”€ train_model.py
โ”‚   โ”‚
โ”‚   โ””โ”€โ”€ visualization  <- Scripts to create exploratory and results oriented visualizations
โ”‚       โ””โ”€โ”€ visualize.py
โ”‚
โ”œโ”€โ”€ LICENSE
โ””โ”€โ”€ README.md          <- README describing project.
You might also like...
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (เคšเคฟเคคเฅเคฐ) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

Language Models Can See: Plugging Visual Controls in Text Generation
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

This is my codes that can visualize the psnr image in testing videos.
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection โ€“ A New

A library for answering questions using data you cannot see
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

Code and data for the paper
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

Releases(v1.0.0)
  • v1.0.0(Nov 4, 2021)

Owner
Tim
Data science. Innovation. ML practitioner.
Tim
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
A small tool to joint picture including gif

README ๅš่ฎพ่ฎก็š„ๆ—ถๅ€™้‡ๅˆฐๆ‹ผๆŽฅ้•ฟๅ›พ็š„ๆƒ…ๅ†ต๏ผŒไฝ†ๆ˜ฏๅ‘็Žฐๆฒกๆœ‰ไป€ไนˆๅฅฝ็”จ็š„่ƒฝๆ‹ผๆŽฅgif็š„ๅทฅๅ…ทใ€‚ ไบŽๆ˜ฏ่‡ชๅทฑๅ†™ไบ†ไธชgifๆ‹ผๆŽฅๅฐๅทฅๅ…ทใ€‚ ๅฏไปฅ่‡ชๅŠจๆ‹ผๆŽฅgifใ€pngๅ’Œjpg็ญ‰ๅธธ่งๆ ผๅผใ€‚ ๆ•ˆๆžœ ไปŽไธŠ่‡ณไธ‹ ไปŽไธ‹่‡ณไธŠ ไปŽๅทฆ่‡ณๅณ ไปŽๅณ่‡ณๅทฆ ไฝฟ็”จ ๅ…‹้š†ไป“ๅบ“ git clone https://github.com/Dels

3 Dec 15, 2021
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Groceries ARL: Association Rules (Birliktelik Kuralฤฑ)

Groceries_ARL Association Rules (Birliktelik Kuralฤฑ) Birliktelik kurallarฤฑ, mark

ลžebnem 5 Feb 08, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

๐ŸŽฎ Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuแบฉn bแป‹ dแปฏ liแป‡u cho quรก trรฌnh train: Sแปญa cรกc file ฤ‘ฦฐแปng dแบซn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022