Pyramid Pooling Transformer for Scene Understanding

Related tags

Deep LearningP2T
Overview

Pyramid Pooling Transformer for Scene Understanding

Requirements:

  • torch 1.6+
  • torchvision 0.7.0
  • timm==0.3.2
  • Validated on torch 1.6.0, torchvision 0.7.0

Models Pretrained on ImageNet1K

Variants Input Size [email protected] [email protected] #Params (M) Pretrained Models
P2T-Tiny 224 x 224 78.1 94.1 11.1 Google Drive
P2T-Small 224 x 224 82.1 95.9 23.0 Google Drive
P2T-Base 224 x 224 83.0 96.2 36.2 Google Drive

Pretrained Models for Downstream tasks

To be updated.

Something Else

Note: we have prepared a stronger version of P2T. Since P2T is still in peer review, we will release the stronger P2T after the acceptance.

You might also like...
 Neural Scene Graphs for Dynamic Scene (CVPR 2021)
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object compositions and views.

A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Code for
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

Comments
  • How to load ImageNet1K pretrained weight to semantic segmentation model?

    How to load ImageNet1K pretrained weight to semantic segmentation model?

    Hello, thanks for open source!

    I use mmseg, and load weight from image classification result, it warns: WARNING - The model and loaded state dict do not match exactly missing keys in source state_dict: backbone.head.weight, backbone.head.bias unexpected key in source state_dict: cls_token, ln1.bias, ln1.weight, layers.0.ln1.bias, layers.0.ln1.weight, layers.0.ln2.bias, layers.0.ln2.weight, layers.0.ffn.layers.0.0.bias, layers.0.ffn.layers.0.0.weight, layers.0.ffn.layers.1.bias, layers.0.ffn.layers.1.weight, layers.0.attn.attn.out_proj.bias, layers.0.attn.attn.out_proj.weight, layers.0.attn.attn.in_proj_bias, layers.0.attn.attn.in_proj_weight, layers.1.ln1.bias, layers.1.ln1.weight, layers.1.ln2.bias, layers.1.ln2.weight, layers.1.ffn.layers.0.0.bias, layers.1.ffn.layers.0.0.weight, layers.1.ffn.layers.1.bias, layers.1.ffn.layers.1.weight, layers.1.attn.attn.out_proj.bias, layers.1.attn.attn.out_proj.weight ...... And the experimental results are terrible as the experiments initialize weight with random.

    So I load weight from ADE20K result, it work and warns: WARNING - The model and loaded state dict do not match exactly missing keys in source state_dict: backbone.head.weight, backbone.head.bias And the result is similar to the result you offer.

    Which weight should I load? ImageNet1K or ADE20K? Or should I modify the keys of weight in ImageNet1K to adapt the key in segmentation?

    opened by asd123pwj 8
  • Questions about your ablation studies

    Questions about your ablation studies

    Hello,

    I have some questions about your ablation studies of pyramid pooling. Could you detail about your baseline version in Table 9? First, you say that you replace P-MHSA with an MHSA with a single pooling operation, what is the detail about single pooling operation? Ex: Pooling Ratios? Second, do you compared your method with original MHSA?

    opened by pp00704831 3
  • P2T replaces PVT trunk bug

    P2T replaces PVT trunk bug

    When I replaced the PVT trunk with P2T in my code, I encountered an error :
    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [16, 512, 3, 3]], which is output 0 of AdaptiveAvgPool2DBackward, is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

    opened by liu-tianxiang 2
  • P2T on ImageNet-22K?

    P2T on ImageNet-22K?

    Hi @yuhuan-wu , thank you for share the code of this excellent work! Have you trained P2T on ImageNet-22K dataset or any further plan to do it? If so, could you please share the pretrained model on ImageNet-22k?

    Thank you.

    opened by fyaft2012 1
Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022