A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

Related tags

Deep LearningHDG
Overview

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms

This repo contains:

  • the HDG implementation (Matlab codes) for 'Analysis and Evaluation of Kinect-based Action Recognition Algorithms', and
  • provides the links (google drive) for downloading the algorithms evaluated in our TIP journal and
  • provides direct links (google drive) to download 5 smaller datasets for action recognition research.

1 Introduction

This repository contains the implementation of HDG presented in the following paper:

[1] Lei Wang, 2017. Analysis and Evaluation of Kinect-based Action Recognition Algorithms. Master's thesis. School of Computer Science and Software Engineering, The University of Western Australia. [ArXiv] [BibTex]

[2] Lei Wang, Du Q. Huynh, and Piotr Koniusz. A Comparative Review of Recent Kinect-Based Action Recognition Algorithms. IEEE Transactions on Image Processing, 29: 15-28, 2020. [ArXiv] [BibTex]

We also provide the links for downloading the algorithms/datasets used in our TIP paper.

2 Other algorithms compared in TIP paper

You can download other algorithms we evaluated in TIP paper from the following links:

3 Datasets used in TIP paper

3.1 Five Smaller datasets

3.1.1 Depth+Skeleton

You can directly download the depth+skeleton sequences for the following smaller datasets here:

The above 5 downloaded datasets contain depth + skeleton data, which you can directly use for HDG algorithm in this repo:

  • unzip a dataset, and
  • put the Dataset folder into HDG folder, then
  • extract the features (refer to following sections for more details).

3.1.2 Depth video only

For downloading the UWA3DActivity+UWA3D Multiview Activity II depth only, you can use this link(extraction code: 172h).

For downloading the CAD-60 depth only, please use this link (extraction code: 36wt)

3.2 Big datasets (NTU RGB+D)

For big datasets such as NTU-60 and NTU-120, please refer to this link for the request to download.

4 Run the codes of HDG

This is an implementation based on Rahmani et al.’s paper ‘Real Time Action Recognition Using Histograms of Depth Gradients and Random Decision Forests’ (WACV2014).

To run our new HDG algorithm (which is analysed and compared in our TIP2020 paper):

4.0 A glance of skeleton configuration

To know more detailed information about the skeleton configuration/graph, please refer to the pdf file attached in this repo.

UWAS denotes the skeleton configuration for UWA3D Activity, and UWAW is for UWA3D Multiview Activity II.

4.1 Data preparation

  • Go to the 'Dataset' folder, then go to the 'depth' folder and copy all depth sequence in this folder (should be .mat format and the internal data has the same name 'inDepthVideo').

  • After that go to the 'skeleton' folder, copy all skeleton sequence (the skeleton sequence should also be .mat format and each skeleton sequence has the following dimension: #jointsx3x#frames, here 3 represents x, y and d respectively), the internal data has the same name 'skeletonsequence'.

4.2 Feature extraction and concatenation

  • Go to the 'MATLAB_Codes' folder, run each 'main' in each algorithm folder(in the order of 00, 01, 02 and 03), and then run 'main' in 'feature_concatenating'. You can also run '02' and '03' first and then run '00' and '01', since '00' may need more time for segmenting the foreground (around 6 hours) and '01' is based on the results of '00'.

  • For UWAMultiview dataset, remember to change the video sequence from uint16 to double using im2double before running each main in 00 and 01: in both 00 and 01 folders, in main function line 33 & 17, change depthsequence=actionvolume; to depthsequence=im2double(actionvolume);.

  • For feature concatenating, you can select different combinations of features for classification. There are four features, which are:

    • hod(histogram of depth),
    • hodg(histogram of depth gradients),
    • jmv(joint movement volume features) and
    • jpd(joint position differences features).
  • Remember to change the number of joints and the torso joint ID in the 'main' of '02' and '03' since different datasets have different number of joints and torso joint IDs (refer to the pdf attached in this repo for the skeleton configuration).

    • MSRPairs (3D Action Pairs): 20 joints, torso joint ID is '2';
    • MSRAction3D: 20 joints, torso joint ID is '4';
    • CAD-60: 15 joints, torso joint ID is '3';
    • UWA3D single view dataset (UWA3D Activity): 15 joints, torso joint ID is '9';
    • UWA3D multi view dataset (UWA3D Multiview Activity II): 15 joints, torso joint ID is '3';

4.3 Classification

  • Run 'main' of random decision forests (Lei uses different 'main' for different datasets since different datasets should have different training and testing datasets). In Lei's implementation, half of data are used for training and the remaining half for testing.

    • MSRPairs (3D Action Pairs): msrpairsmain.m
    • MSRAction3D: msr3dmain.m
    • CAD-60: cadmain.m
    • UWA3D single view (UWA3D Activity): uwasinglemain.m
    • UWA3D multi view (UWA3D Multiview Activity II): uwamultimain.m

4.4 Visualization (i.e., confusion matrix)

  • The results of the confusion matrix will be saved in the 'Results' folder, and the confusion matrix will be displayed. Moreover, the total accuracy will appear in the workspace of the MATLAB.

4.4.1 Save figures to pdf format

  • saveTightFigure function is downloaded from online resource, which can be used to save the confusion matrix plot as pdf files. The use of this function is, for example: saveTightFigure(gcf, 'uwamultiview.pdf');

Codes for parameters evaluation, and running over all possible combinations of selecting half subjects (for training) are not provided in this repo.

For more information, please refer to my research report and our journal paper, or contact me.

5 Citations

You can cite the following papers for the use of this work:

@mastersthesis{lei_thesis_2017,
  author       = {Lei Wang}, 
  title        = {Analysis and Evaluation of {K}inect-based Action Recognition Algorithms},
  school       = {School of the Computer Science and Software Engineering, The University of Western Australia},
  year         = 2017,
  month        = {Nov}
}
@article{lei_tip_2019,
author={Lei Wang and Du Q. Huynh and Piotr Koniusz},
journal={IEEE Transactions on Image Processing},
title={A Comparative Review of Recent Kinect-Based Action Recognition Algorithms},
year={2020},
volume={29},
number={},
pages={15-28},
doi={10.1109/TIP.2019.2925285},
ISSN={1941-0042},
month={},}

Acknowledgments

I am grateful to Associate Professor Du Huynh for her valuable suggestions and discussions. We would like to thank the authors of HON4D, HOPC, LARP-SO, HPM+TM, IndRNN and ST-GCN for making their codes publicly available. We thank the ROSE Lab of Nanyang Technological University(NTU), Singapore, for making the NTU RGB+D dataset freely accessible.

Owner
Lei Wang
PhD student, Machine Learning/Computer Vision Researcher
Lei Wang
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022