Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Overview

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Official PyTorch implementation for the paper

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Rishabh Jangir*, Nicklas Hansen*, Sambaran Ghosal, Mohit Jain, and Xiaolong Wang

[arXiv], [Webpage]

Installation

GPU access with CUDA >=11.1 support is required. Install MuJoCo if you do not have it installed already:

  • Obtain a license on the MuJoCo website.
  • Download MuJoCo binaries here.
  • Unzip the downloaded archive into ~/.mujoco/mujoco200 and place your license key file mjkey.txt at ~/.mujoco.
  • Use the env variables MUJOCO_PY_MJKEY_PATH and MUJOCO_PY_MUJOCO_PATH to specify the MuJoCo license key path and the MuJoCo directory path.
  • Append the MuJoCo subdirectory bin path into the env variable LD_LIBRARY_PATH.

Then, the remainder of the dependencies can be installed with the following commands:

conda env create -f setup/conda.yml
conda activate lookcloser

Training

We provide training scripts for solving each of the four tasks using our method. The training scripts can be found in the scripts directory. Training takes approximately 16 hours on a single GPU for 500k timesteps.

Command: bash scripts/multiview.sh runs with the default arguments set towards training the reach environment with image observations with our crossview method.

Please take a look at src/arguments.py for detailed description of arguments and their usage. The different baselines considered in the paper can be run with little modification of the input arguments.

Results

We find that while using multiple views alone improves the sim-to-real performance of SAC, our Transformer-based view fusion is far more robust across all tasks.

sim-to-real results

See our paper for more results.

Method

Our method improves vision-based robotic manipulation by fusing information from multiple cameras using transformers. The learned RL policy transfers from simulation to a real robot, and solves precision-based manipulation tasks directly from uncalibrated cameras, without access to state information, and with a high degree of variability in task configurations.

method

Attention Maps

We visualize attention maps learned by our method, and find that it learns to relate concepts shared between the two views, e.g. when querying a point on an object shown the egocentric view, our method attends strongly to the same object in the third-person view, and vice-versa. attention

Tasks

Together with our method, we also release a set of four image-based robotic manipulation tasks used in our research. Each task is goal-conditioned with the goal specified directly in the image observations, the agent has no access to state information, and task configurations are randomly initialized at the start of each episode. The provided tasks are:

  • Reach: Reach a randomly positioned mark on the table with the robot's end-effector.
  • Push: Push a box to a goal position indicated by a mark on the table.
  • Pegbox: Place a peg attached to the robot's end-effector with a string into a box.
  • Hammerall: Hammer in an out-of-position peg; each episode, only one of four pegs are randomly initialized out-of-position.

tasks

Citation

If you find our work useful in your research, please consider citing the paper as follows:

@article{Jangir2022Look,
  title={Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation},
  author={ Rishabh Jangir and Nicklas Hansen and Sambaral Ghosal and Mohit Jain and Xiaolong Wang},
  booktitle={arXiv},
  primaryclass={cs.LG},
  year={2022}
}

License

This repository is licensed under the MIT license; see LICENSE for more information.

Owner
Rishabh Jangir
Robotics, AI, Reinforcement Learning, Machine Intelligence.
Rishabh Jangir
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022