Self-attentive task GAN for space domain awareness data augmentation.

Overview

SATGAN

TODO: update the article URL once published.

Article about this implemention

The self-attentive task generative adversarial network (SATGAN) learns to emulate realistic target sensor noise characteristics in order to augment existing datasets with simulated scenes that better approximate real-world systems. It learns a mapping from random input noise to realistic target-domain sensor characteristics while maintaining semantic information in simulated scenes through the use of a task network. Example real images of a space domain awareness (SDA) scene from the original paper are shown below:

Real images

Example noiseless simulated scenes used as context are below:

Context images

Finally example simulated scenes with generated addative noise are shown below:

Fake images

SATGAN comprises three parts: a generator based on a U-net implementation, a discriminator based on PatchGAN, and a task network based on [Fletcher et al.]. The SATGAN architecture is illustrated below:

SATGAN architecture

Setup

Prerequisites

  • Tensorflow >= 2.2.1
  • Tensorflow-addons >= 0.11.2 (for optional mish activation)
  • MISS YOLOv3

Recommended

  • Linux with Tensorflow GPU edition + cuDNN

Getting Started

# clone this repo
git clone https://github.com/Engineero/satgan.git
cd satgan

# train the model (this may take 1-8 hours depending on GPU, on CPU you will be waiting for a bit)
python train_satgan.py \
  --mode train \
  --output_dir model_train \
  --max_epochs 200 \
  --input_dir my_data/train \

Citation

TODO: update paper link

If you use this code for your research, please cite the paper this code is based on: Self-attending task generative adversarial network for realistic satellite image creation:

@article{toner_self-attending_2021,
	title = {Self-{Attending} {Task} {Generative} {Adversarial} {Network} for {Realistic} {Satellite} {Image} {Creation}},
	url = {https://arxiv.org/abs/2111.09463v1},
	language = {en},
	urldate = {2021-11-19},
	author = {Toner, Nathan and Fletcher, Justin},
	month = nov,
	year = {2021},
	file = {Snapshot:/Users/nathantoner/Zotero/storage/K7AHTQEU/2111.html:text/html},
}

Acknowledgments

Owner
Nathan
:(){ : | :& };:
Nathan
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Vikrant Deshpande 1 Nov 17, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022