Extreme Rotation Estimation using Dense Correlation Volumes

Overview

Extreme Rotation Estimation using Dense Correlation Volumes

This repository contains a PyTorch implementation of the paper:

Extreme Rotation Estimation using Dense Correlation Volumes [Project page] [Arxiv]

Ruojin Cai, Bharath Hariharan, Noah Snavely, Hadar Averbuch-Elor

CVPR 2021

Introduction

We present a technique for estimating the relative 3D rotation of an RGB image pair in an extreme setting, where the images have little or no overlap. We observe that, even when images do not overlap, there may be rich hidden cues as to their geometric relationship, such as light source directions, vanishing points, and symmetries present in the scene. We propose a network design that can automatically learn such implicit cues by comparing all pairs of points between the two input images. Our method therefore constructs dense feature correlation volumes and processes these to predict relative 3D rotations. Our predictions are formed over a fine-grained discretization of rotations, bypassing difficulties associated with regressing 3D rotations. We demonstrate our approach on a large variety of extreme RGB image pairs, including indoor and outdoor images captured under different lighting conditions and geographic locations. Our evaluation shows that our model can successfully estimate relative rotations among non-overlapping images without compromising performance over overlapping image pairs.

Overview of our Method:

Overview

Given a pair of images, a shared-weight Siamese encoder extracts feature maps. We compute a 4D correlation volume using the inner product of features, from which our model predicts the relative rotation (here, as distributions over Euler angles).

Dependencies

# Create conda environment with python 3.6, torch 1.3.1 and CUDA 10.0
conda env create -f ./tools/environment.yml
conda activate rota

Dataset

Perspective images are randomly sampled from panoramas with a resolution of 256 × 256 and a 90◦ FoV. We sample images distributed uniformly over the range of [−180, 180] for yaw angles. To avoid generating textureless images that focus on the ceiling/sky or the floor, we limit the range over pitch angles to [−30◦, 30◦] for the indoor datasets and [−45◦, 45◦] for the outdoor dataset.

Download InteriorNet, SUN360, and StreetLearn datasets to obtain the full panoramas.

Metadata files about the training and test image pairs are available in the following google drive: link. Download the metadata.zip file, unzip it and put it under the project root directory.

We base on this MATLAB Toolbox that extracts perspective images from an input panorama. Before running PanoBasic/pano2perspective_script.m, you need to modify the path to the datasets and metadata files in the script.

Pretrained Model

Pretrained models are be available in the following google drive: link. To use the pretrained models, download the pretrained.zip file, unzip it and put it under the project root directory.

Testing the pretrained model:

The following commands test the performance of the pre-trained models in the rotation estimation task. The commands output the mean and median geodesic error, and the percentage of pairs with a relative rotation error under 10◦ for different levels of overlap on the test set.

# Usage:
# python test.py <config> --pretrained <checkpoint_filename>

python test.py configs/sun360/sun360_cv_distribution.yaml \
    --pretrained pretrained/sun360_cv_distribution.pt

python test.py configs/interiornet/interiornet_cv_distribution.yaml \
    --pretrained pretrained/interiornet_cv_distribution.pt

python test.py configs/interiornetT/interiornetT_cv_distribution.yaml \
    --pretrained pretrained/interiornetT_cv_distribution.pt

python test.py configs/streetlearn/streetlearn_cv_distribution.yaml \
    --pretrained pretrained/streetlearn_cv_distribution.pt

python test.py configs/streetlearnT/streetlearnT_cv_distribution.yaml \
    --pretrained pretrained/streetlearnT_cv_distribution.pt

Rotation estimation evaluation of the pretrained models is as follows:

InteriorNet InteriorNet-T SUM360 StreetLearn StreetLearn-T
Avg(°) Med(°) 10° Avg(°) Med(°) 10° Avg(°) Med(°) 10° Avg(°) Med(°) 10° Avg(°) Med(°) 10°
Large 1.82 0.88 98.76% 8.86 1.86 93.13% 1.37 1.09 99.51% 1.38 1.12 100.00% 24.98 2.50 78.95%
Small 4.31 1.16 96.58% 30.43 2.63 74.07% 6.13 1.77 95.86% 3.25 1.41 98.34% 27.84 3.19 74.76%
None 37.69 3.15 61.97% 49.44 4.17 58.36% 34.92 4.43 61.39% 5.46 1.65 96.60% 32.43 3.64 72.69%
All 13.49 1.18 86.90% 29.68 2.58 75.10% 20.45 2.23 78.30% 4.10 1.46 97.70% 29.85 3.19 74.30%

Training

# Usage:
# python train.py <config>

python train.py configs/interiornet/interiornet_cv_distribution.yaml

python train.py configs/interiornetT/interiornetT_cv_distribution.yaml

python train.py configs/sun360/sun360_cv_distribution_overlap.yaml
python train.py configs/sun360/sun360_cv_distribution.yaml --resume --pretrained <checkpoint_filename>

python train.py configs/streetlearn/streetlearn_cv_distribution_overlap.yaml
python train.py configs/streetlearn/streetlearn_cv_distribution.yaml --resume --pretrained <checkpoint_filename>

python train.py configs/streetlearnT/streetlearnT_cv_distribution_overlap.yaml
python train.py configs/streetlearnT/streetlearnT_cv_distribution.yaml --resume --pretrained <checkpoint_filename>

For SUN360 and StreetLearn dataset, finetune from the pretrained model, which is training with only overlapping pairs, at epoch 10. More configs about baselines can be found in the folder configs/sun360.

Cite

Please cite our work if you find it useful:

@inproceedings{Cai2021Extreme,
 title={Extreme Rotation Estimation using Dense Correlation Volumes},
 author={Cai, Ruojin and Hariharan, Bharath and Snavely, Noah and Averbuch-Elor, Hadar},
 booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
 year={2021}
}

Acknowledgment

This work was supported in part by the National Science Foundation (IIS-2008313) and by the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program and the Zuckerman STEM leadership program.

Owner
Ruojin Cai
Ph.D. student at Cornell University
Ruojin Cai
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022