U-Net Brain Tumor Segmentation

Overview

U-Net Brain Tumor Segmentation

🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is welcome), you can use TensorFlow dataset API instead.

This repo show you how to train a U-Net for brain tumor segmentation. By default, you need to download the training set of BRATS 2017 dataset, which have 210 HGG and 75 LGG volumes, and put the data folder along with all scripts.

data
  -- Brats17TrainingData
  -- train_dev_all
model.py
train.py
...

About the data

Note that according to the license, user have to apply the dataset from BRAST, please do NOT contact me for the dataset. Many thanks.


Fig 1: Brain Image
  • Each volume have 4 scanning images: FLAIR、T1、T1c and T2.
  • Each volume have 4 segmentation labels:
Label 0: background
Label 1: necrotic and non-enhancing tumor
Label 2: edema 
Label 4: enhancing tumor

The prepare_data_with_valid.py split the training set into 2 folds for training and validating. By default, it will use only half of the data for the sake of training speed, if you want to use all data, just change DATA_SIZE = 'half' to all.

About the method


Fig 2: Data augmentation

Start training

We train HGG and LGG together, as one network only have one task, set the task to all, necrotic, edema or enhance, "all" means learn to segment all tumors.

python train.py --task=all

Note that, if the loss stick on 1 at the beginning, it means the network doesn't converge to near-perfect accuracy, please try restart it.

Citation

If you find this project useful, we would be grateful if you cite the TensorLayer paper:

@article{tensorlayer2017,
author = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
journal = {ACM Multimedia},
title = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
url = {http://tensorlayer.org},
year = {2017}
}
Comments
  • TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    Lossy conversion from float64 to uint8. Range [-0.18539370596408844, 2.158207416534424]. Convert image to uint8 prior to saving to suppress this warning. Traceback (most recent call last): File "train.py", line 250, in main(args.task) File "train.py", line 106, in main X[:,:,2,np.newaxis], X[:,:,3,np.newaxis], y])#[:,:,np.newaxis]]) File "train.py", line 26, in distort_imgs fill_mode='constant') TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    opened by shenzeqi 8
  • MemoryError

    MemoryError

    @zsdonghao I am getting the memory error like this, What is the solution for this error?

    Traceback (most recent call last): File "train.py", line 279, in main(args.task) File "train.py", line 78, in main y_test = (y_test > 0).astype(int) MemoryError

    opened by PoonamZ 4
  • Error: Your CPU supports instructions that TensorFlow binary not compiled to use: AVX2

    Error: Your CPU supports instructions that TensorFlow binary not compiled to use: AVX2

    I am running run.py but gives error:

    (base) G:>cd BraTS_2018_U-Net-master

    (base) G:\BraTS_2018_U-Net-master>run.py [*] creates checkpoint ... [*] creates samples/all ... finished Brats18_2013_24_1 2019-06-15 22:05:45.959220: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "G:\BraTS_2018_U-Net-master\run.py", line 154, in

    File "G:\BraTS_2018_U-Net-master\run.py", line 117, in main t_seg = tf.placeholder('float32', [1, nw, nh, 1], name='target_segment') NameError: name 'model' is not defined

    opened by sapnii2 2
  • TypeError: __init__() got an unexpected keyword argument 'out_size'

    TypeError: __init__() got an unexpected keyword argument 'out_size'

    • After conv: Tensor("u_net/conv8/leaky_relu:0", shape=(5, 1, 1, 512), dtype=float32, device=/device:CPU:0) Traceback (most re screenshot from 2019-02-19 18-02-42 cent call last): File "train.py", line 250, in main(args.task) File "train.py", line 121, in main net = model.u_net_bn(t_image, is_train=True, reuse=False, n_out=1) File "/home/achi/project/u-net-brain-tumor-master/model.py", line 179, in u_net_bn padding=pad, act=None, batch_size=batch_size, W_init=w_init, b_init=b_init, name='deconv7') File "/home/achi/anaconda3/lib/python3.6/site-packages/tensorlayer/decorators/deprecated_alias.py", line 24, in wrapper return f(*args, **kwargs) TypeError: init() got an unexpected keyword argument 'out_size'
    opened by achintacsgit 1
  • Pre-trained model

    Pre-trained model

    I was wondering if you would share a pre-trained model. I would need to run inference-only, and training the model is taking longer than expected.

    Thanks for sharing this project!

    opened by luisremis 1
  • TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    [TL] [!] checkpoint exists ... [TL] [!] samples/all exists ... Lossy conversion from float64 to uint8. Range [-0.19753389060497284, 2.826017379760742]. Convert image to uint8 prior to saving to suppress this warning.

    TypeError Traceback (most recent call last) in 239 tl.files.save_npz(net.all_params, name=save_dir+'/u_net_{}.npz'.format(task), sess=sess) 240 --> 241 main(task='all') 242 243 ##if name == "main":

    in main(task) 103 for i in range(10): 104 x_flair, x_t1, x_t1ce, x_t2, label = distort_imgs([X[:,:,0,np.newaxis], X[:,:,1,np.newaxis], --> 105 X[:,:,2,np.newaxis], X[:,:,3,np.newaxis], y])#[:,:,np.newaxis]]) 106 # print(x_flair.shape, x_t1.shape, x_t1ce.shape, x_t2.shape, label.shape) # (240, 240, 1) (240, 240, 1) (240, 240, 1) (240, 240, 1) (240, 240, 1) 107 X_dis = np.concatenate((x_flair, x_t1, x_t1ce, x_t2), axis=2)

    in distort_imgs(data) 23 x1, x2, x3, x4, y = tl.prepro.zoom_multi([x1, x2, x3, x4, y], 24 zoom_range=[0.9, 1.1], is_random=True, ---> 25 fill_mode='constant') 26 return x1, x2, x3, x4, y 27

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    opened by BTapan 0
  • TensorFlow Implemetation

    TensorFlow Implemetation

    Do you have implementation of brain tumor segmentation code directly in tensorflow without using tensorlayer? If yes, can you share the same? Thank you.

    opened by rupalkapdi 0
  • What is checkpoint?

    What is checkpoint?

    When I run "python train.py" and then have a checkpoint folder is created. What function of checkpoint folder? Thank you

    And I also have another question. When we had the picture, as follows. Is that the end result? I mean we can submit them to the Brast_2018 challenge? image

    Thank you very much.

    opened by tphankr 0
  • Making sense

    Making sense

    Novice here, i noticed the shape of the X_train arrays ended with 4. (240,240,4) Does each of those channel represent the type of the scan ( T1, t2, flair, t1ce ) ?

    opened by guido-niku 1
  • Classification Layer - Activation & Shape?

    Classification Layer - Activation & Shape?

    Hi!

    I went through this repository after reading your paper. Architecture on page 6, shows the final classification layer to produce feature maps of shape (240, 240, 2) which may indicate the use of a Softmax activation (not specified in the paper). On the contrary, model used in code has a classification layer of shape (240, 240, 1) using Sigmoid activation.

    Kindly clarify this ambiguity.

    opened by stalhabukhari 2
Releases(0.1)
Owner
Hao
Assistant Professor @ Peking University
Hao
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022