This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

Overview

EEND-vector clustering

The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates two complementary major diarization approaches, i.e., traditional clustering-based and emerging end-to-end neural network-based approaches, to make the best of both worlds. In [1] it is shown that the EEND-vector clustering outperforms EEND when the recording is long (e.g., more than 5 min), while in [2] it is shown based on CALLHOME data that it outperforms x-vector clustering and EEND-EDA especially when the number of speakers in recordings is large.

This repository contains an example implementation of the EEND-vector clustering based on Pytorch to reproduce the results in [2], i.e., the CALLHOME experiments. For the trainer, we use Padertorch. This repository is implemented based on EEND and relies on some useful functions provided therein.

References

[1] Keisuke Kinoshita, Marc Delcroix, and Naohiro Tawara, "Integrating end-to-end neural and clustering-based diarization: Getting the best of both worlds," Proc. ICASSP, pp. 7198–7202, 2021

[2] Keisuke Kinoshita, Marc Delcroix, and Naohiro Tawara, "Advances in integration of end-to-end neural and clustering-based diarization for real conversational speech," Proc. Interspeech, 2021 (to appear)

Citation

@inproceedings{eend-vector-clustering,
 author = {Keisuke Kinoshita and Marc Delcroix and Naohiro Tawara},
 title = {Integrating End-to-End Neural and Clustering-Based Diarization: Getting the Best of Both Worlds},
 booktitle = {{ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}},
 pages={7198-7202}
 year = {2021}
}

Install tools

Requirements

  • NVIDIA CUDA GPU
  • CUDA Toolkit (version == 9.2, 10.1 or 10.2)

Install kaldi and python environment

cd tools
make
  • This command builds kaldi at tools/kaldi
    • if you want to use pre-build kaldi
      cd tools
      make KALDI=<existing_kaldi_root>
      This option make a symlink at tools/kaldi
  • This command extracts miniconda3 at tools/miniconda3, and creates conda envirionment named 'eend'
  • Then, installs Pytorch and Padertorch into 'eend' environment
  • Then, clones EEND to reference symbolic links stored under eend/, egs/ and utils/

Test recipe (mini_librispeech)

Configuration

  • Modify egs/mini_librispeech/v1/cmd.sh according to your job schedular. If you use your local machine, use "run.pl" (default). If you use Grid Engine, use "queue.pl" If you use SLURM, use "slurm.pl". For more information about cmd.sh see http://kaldi-asr.org/doc/queue.html.

Run data preparation, training, inference, and scoring

cd egs/mini_librispeech/v1
CUDA_VISIBLE_DEVICES=0 ./run.sh
  • See RESULT.md and compare with your result.

CALLHOME experiment

Configuraition

  • Modify egs/callhome/v1/cmd.sh according to your job schedular. If you use your local machine, use "run.pl" (default). If you use Grid Engine, use "queue.pl" If you use SLURM, use "slurm.pl". For more information about cmd.sh see http://kaldi-asr.org/doc/queue.html.

Run data preparation, training, inference, and scoring

cd egs/callhome/v1
CUDA_VISIBLE_DEVICES=0 ./run.sh --db_path <db_path>
# <db_path> means absolute path of the directory where the necessary LDC corpora are stored.
  • See RESULT.md and compare with your result.
  • If you want to run multi-GPU training, simply set CUDA_VISIBLE_DEVICES appropriately. This environment variable may be automatically set by your job schedular such as SLURM.
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023