A practical ML pipeline for data labeling with experiment tracking using DVC.

Overview

Auto Label Pipeline

A practical ML pipeline for data labeling with experiment tracking using DVC

Goals:

  • Demonstrate reproducible ML
  • Use DVC to build a pipeline and track experiments
  • Automatically clean noisy data labels using Cleanlab cross validation
  • Determine which FastText subword embedding performs better for semi-supervised cluster classification
  • Determine optimal hyperparameters through experiment tracking
  • Prepare casually labeled data for human evaluation

Demo: View Experiments recorded in git branches:

asciicast

The Data

For our working demo, we will purify some of the slightly noisy/dirty labels found in Wikidata people entries for attributes for Employers and Occupations. Our initial data labels have been harvested from a json dump of Wikidata, the Kensho Wikidata dataset, and this notebook script for extracting the data.

Data Input Format

Tab separated CSV files, with the fields:

  • text_data - the item that is to be labeled (single word or short group of words)
  • class_type - the class label
  • context - any text that surrounds the text_data field in situ, or defines the text_data item in other words.
  • count - the number of occurrences of this label; how common it appears in the existing data.

Data Output format

  • (same parameters as the data input plus)
  • date_updated - when the label was updated
  • previous_class_type - the previous class_type label
  • mislabeled_rank - records how low the confidence was prior to a re-label

The Pipeline

  • Fetch
  • Prepare
  • Train
  • Relabel

For details, see the README in the src folder. The pipeline is orchestrated via the dvc.yaml file, and parameterized via params.yaml.

Using/Extending the pipeline

  1. Drop your own CSV files into the data/raw directory
  2. Run the pipeline
  3. Tune settings, embeddings, etc, until no longer amused
  4. Verify your results manually and by submitting data/final/data.csv for human evaluation, using random sampling and drawing heavily from the mislabeled_rank entries.

Project Structure

├── LICENSE
├── README.md
├── data                    # <-- Directory with all types of data
│ ├── final                 # <-- Directory with final data
│ │ ├── class.metrics.csv   # <-- Directory with raw and intermediate data
│ │ └── data.csv            # <-- Pipeline output (not stored in git)
│ ├── interim               # <-- Directory with temporary data
│ │ ├── datafile.0.csv
│ │ └── datafile.1.csv
│ ├── prepared              # <-- Directory with prepared data
│ │ └── data.all.csv
│ └── raw                   # <-- Directory with raw data; populated by pipeline's fetch stage
│     ├── README.md
│     ├── cc.en.300.bin               # <-- Fasttext binary model file, creative commons 
│     ├── crawl-300d-2M-subword.bin   # <-- Fasttext binary model file, common crawl
│     ├── crawl-300d-2M-subword.vec
│     ├── employers.wikidata.csv      # <-- Our initial data, 1 set of class labels 
│     ├── lid.176.ftz
│     └── occupations.wikidata.csv    # <-- Our initial data, 1 set of class labels
├── dvc.lock                # <-- DVC internal state tracking file
├── dvc.yaml                # <-- DVC project configuration file
├── dvc_plots               # <-- Temp directory for DVC plots; not tracked by git
│ └── README.md
├── model
│ ├── class.metrics.csv
│ ├── svm.model.pkl
│ └── train.metrics.json    # <-- Metrics from the pipeline's train stage  
├── mypy.ini
├── params.yaml             # <-- Parameter configuration file for the pipeline
├── reports                 # <-- Directory with metrics output
│ ├── prepare.metrics.json  
│ └── relabel.metrics.json
├── requirements-dev.txt
├── requirements.txt
├── runUnitTests.sh
└── src                     # <-- Directory containing the pipeline's code
    ├── README.md
    ├── fetch.py
    ├── prepare.py
    ├── relabel.py
    ├── train.py
    └── utils.py

Setup

Create environment

conda create --name auto-label-pipeline python=3.9

conda activate auto-label-pipeline

Install requirements

pip install -r requirements.txt

If you're going to modify the source, also install the requirements-dev.txt file


Reproduce the pipeline results locally

dvc repro

View Metrics

dvc metrics show

See also: DVC metrics

Working with Experiments

To see your local experiments:

dvc exp show

Experiments that have been turned into a branches can be referenced directly in commands:

dvc exp diff svc_linear_ex svc_rbf_ex

e.g. to compare experiments:

dvc exp diff [experiment branch name] [experiment branch 2 name]

e.g.:

dvc exp diff svc_linear_ex svc_rbf_ex

dvc exp diff svc_poly_ex svc_rbf_ex

To create an experiment by changing a parameter:

dvc exp run --set-param train.split=0.9 --name my_split_ex

(When promoting an experiment to a branch, DVC does not switch into the branch.)

To save and share your experiment in a branch:

dvc exp branch my_split_ex my_split_ex_branch

See also: DVC Experiments

View plots

Initial Confusion matrix:

dvc plots show model/class.metrics.csv -x actual -y predicted --template confusion

Confusion matrix after relabeling:

dvc plots show data/final/class.metrics.csv -x actual -y predicted --template confusion

See also: DVC plots


Conclusions

  • For relabeling and cleaning, it's important to have more than two labels, and to specifying an UNK label for: unknown; labels spanning multiple groups; or low confidence support.
  • Standardizing the input data formats allow users to flexibly use many different data sources.
  • Language detection is an important part of data cleaning, however problematic because:
    • Modern languages sometimes "borrow" words from other languages (but not just any words!)
    • Language detection models perform inference poorly with limited data, especially just a single word.
    • Normalization utilities, such as unidecode aren't helpful; (the wrong word in more readable letters is still the wrong word).
  • Experimentation parameters often have co-dependencies that would make a simple combinatorial grid search inefficient.

Recommended readings:

  • Confident Learning: Estimating Uncertainty in Dataset Labels by Curtis G. Northcutt, Lu Jiang, Isaac L. Chuang, 31 Oct 2019, arxiv
  • A Simple but tough-to-beat baseline for sentence embeddings by Sanjeev Arora, Yingyu Liang, Tengyu Ma, ICLR 2017, paper
  • Support Vector Clustering by Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik, November 2001 Journal of Machine Learning Research 2 (12):125-137, DOI:10.1162/15324430260185565, paper
  • SVM clustering by Winters-Hilt, S., Merat, S. BMC Bioinformatics 8, S18 (2007). link, paper

Note: this repo layout borrows heavily from the Cookie Cutter Data Science Layout If you're not familiar with it, please check it out.

Owner
Todd Cook
Software craftsman
Todd Cook
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022