Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Overview

Neural Turing Machine (NTM) &

Differentiable Neural Computer (DNC) with

pytorch & visdom


  • Sample on-line plotting while training(avg loss)/testing(write/read weights & memory) NTM on the copy task (top 2 rows, 1st row converges to sequentially write to lower locations, 2nd row converges to sequentially write to upper locations) and DNC on the repeat-copy task (3rd row) (the write/read weights here are after location focus so are no longer necessarily normalized within each head by design):

  • Sample loggings while training DNC on the repeat-copy task (we use WARNING as the logging level currently to get rid of the INFO printouts from visdom):
[WARNING ] (MainProcess) <===================================>
[WARNING ] (MainProcess) bash$: python -m visdom.server
[WARNING ] (MainProcess) http://localhost:8097/env/daim_17051000
[WARNING ] (MainProcess) <===================================> Agent:
[WARNING ] (MainProcess) <-----------------------------======> Env:
[WARNING ] (MainProcess) Creating {repeat-copy | } w/ Seed: 123
[WARNING ] (MainProcess) Word     {length}:   {4}
[WARNING ] (MainProcess) Words #  {min, max}: {1, 2}
[WARNING ] (MainProcess) Repeats  {min, max}: {1, 2}
[WARNING ] (MainProcess) <-----------------------------======> Circuit:    {Controller, Accessor}
[WARNING ] (MainProcess) <--------------------------------===> Controller:
[WARNING ] (MainProcess) LSTMController (
  (in_2_hid): LSTMCell(70, 64, bias=1)
)
[WARNING ] (MainProcess) <--------------------------------===> Accessor:   {WriteHead, ReadHead, Memory}
[WARNING ] (MainProcess) <-----------------------------------> WriteHeads: {1 heads}
[WARNING ] (MainProcess) DynamicWriteHead (
  (hid_2_key): Linear (64 -> 16)
  (hid_2_beta): Linear (64 -> 1)
  (hid_2_alloc_gate): Linear (64 -> 1)
  (hid_2_write_gate): Linear (64 -> 1)
  (hid_2_erase): Linear (64 -> 16)
  (hid_2_add): Linear (64 -> 16)
)
[WARNING ] (MainProcess) <-----------------------------------> ReadHeads:  {4 heads}
[WARNING ] (MainProcess) DynamicReadHead (
  (hid_2_key): Linear (64 -> 64)
  (hid_2_beta): Linear (64 -> 4)
  (hid_2_free_gate): Linear (64 -> 4)
  (hid_2_read_mode): Linear (64 -> 12)
)
[WARNING ] (MainProcess) <-----------------------------------> Memory:     {16(batch_size) x 16(mem_hei) x 16(mem_wid)}
[WARNING ] (MainProcess) <-----------------------------======> Circuit:    {Overall Architecture}
[WARNING ] (MainProcess) DNCCircuit (
  (controller): LSTMController (
    (in_2_hid): LSTMCell(70, 64, bias=1)
  )
  (accessor): DynamicAccessor (
    (write_heads): DynamicWriteHead (
      (hid_2_key): Linear (64 -> 16)
      (hid_2_beta): Linear (64 -> 1)
      (hid_2_alloc_gate): Linear (64 -> 1)
      (hid_2_write_gate): Linear (64 -> 1)
      (hid_2_erase): Linear (64 -> 16)
      (hid_2_add): Linear (64 -> 16)
    )
    (read_heads): DynamicReadHead (
      (hid_2_key): Linear (64 -> 64)
      (hid_2_beta): Linear (64 -> 4)
      (hid_2_free_gate): Linear (64 -> 4)
      (hid_2_read_mode): Linear (64 -> 12)
    )
  )
  (hid_to_out): Linear (128 -> 5)
)
[WARNING ] (MainProcess) No Pretrained Model. Will Train From Scratch.
[WARNING ] (MainProcess) <===================================> Training ...
[WARNING ] (MainProcess) Reporting       @ Step: 500 | Elapsed Time: 30.609361887
[WARNING ] (MainProcess) Training Stats:   avg_loss:         0.014866309287
[WARNING ] (MainProcess) Evaluating      @ Step: 500
[WARNING ] (MainProcess) Evaluation        Took: 1.6457400322
[WARNING ] (MainProcess) Iteration: 500; loss_avg: 0.0140423600748
[WARNING ] (MainProcess) Saving Model    @ Step: 500: /home/zhang/ws/17_ws/pytorch-dnc/models/daim_17051000.pth ...
[WARNING ] (MainProcess) Saved  Model    @ Step: 500: /home/zhang/ws/17_ws/pytorch-dnc/models/daim_17051000.pth.
[WARNING ] (MainProcess) Resume Training @ Step: 500
...

What is included?

This repo currently contains the following algorithms:

  • Neural Turing Machines (NTM) [1]
  • Differentiable Neural Computers (DNC) [2]

Tasks:

  • copy
  • repeat-copy

Code structure & Naming conventions

NOTE: we follow the exact code structure as pytorch-rl so as to make the code easily transplantable.

  • ./utils/factory.py

We suggest the users refer to ./utils/factory.py, where we list all the integrated Env, Circuit, Agent into Dict's. All of the core classes are implemented in ./core/. The factory pattern in ./utils/factory.py makes the code super clean, as no matter what type of Circuit you want to train, or which type of Env you want to train on, all you need to do is to simply modify some parameters in ./utils/options.py, then the ./main.py will do it all (NOTE: this ./main.py file never needs to be modified).

  • namings

To make the code more clean and readable, we name the variables using the following pattern:

  • *_vb: torch.autograd.Variable's or a list of such objects
  • *_ts: torch.Tensor's or a list of such objects
  • otherwise: normal python datatypes

Dependencies


How to run:

You only need to modify some parameters in ./utils/options.py to train a new configuration.

  • Configure your training in ./utils/options.py:
  • line 12: add an entry into CONFIGS to define your training (agent_type, env_type, game, circuit_type)
  • line 28: choose the entry you just added
  • line 24-25: fill in your machine/cluster ID (MACHINE) and timestamp (TIMESTAMP) to define your training signature (MACHINE_TIMESTAMP), the corresponding model file and the log file of this training will be saved under this signature (./models/MACHINE_TIMESTAMP.pth & ./logs/MACHINE_TIMESTAMP.log respectively). Also the visdom visualization will be displayed under this signature (first activate the visdom server by type in bash: python -m visdom.server &, then open this address in your browser: http://localhost:8097/env/MACHINE_TIMESTAMP)
  • line 28: to train a model, set mode=1 (training visualization will be under http://localhost:8097/env/MACHINE_TIMESTAMP); to test the model of this current training, all you need to do is to set mode=2 (testing visualization will be under http://localhost:8097/env/MACHINE_TIMESTAMP_test).
  • Run:

python main.py


Implementation Notes:

The difference between NTM & DNC is stated as follows in the DNC[2] paper:

Comparison with the neural Turing machine. The neural Turing machine (NTM) was the predecessor to the DNC described in this work. It used a similar architecture of neural network controller with read–write access to a memory matrix, but differed in the access mechanism used to interface with the memory. In the NTM, content-based addressing was combined with location-based addressing to allow the network to iterate through memory locations in order of their indices (for example, location n followed by n+1 and so on). This allowed the network to store and retrieve temporal sequences in contiguous blocks of memory. However, there were several drawbacks. First, the NTM has no mechanism to ensure that blocks of allocated memory do not overlap and interfere—a basic problem of computer memory management. Interference is not an issue for the dynamic memory allocation used by DNCs, which provides single free locations at a time, irrespective of index, and therefore does not require contiguous blocks. Second, the NTM has no way of freeing locations that have already been written to and, hence, no way of reusing memory when processing long sequences. This problem is addressed in DNCs by the free gates used for de-allocation. Third, sequential information is preserved only as long as the NTM continues to iterate through consecutive locations; as soon as the write head jumps to a different part of the memory (using content-based addressing) the order of writes before and after the jump cannot be recovered by the read head. The temporal link matrix used by DNCs does not suffer from this problem because it tracks the order in which writes were made.

We thus make some effort to put those two together in a combined codebase. The classes implemented have the following hierarchy:

  • Agent
    • Env
    • Circuit
      • Controller
      • Accessor
        • WriteHead
        • ReadHead
        • Memory

The part where NTM & DNC differs is the Accessor, where in the code NTM uses the StaticAccessor(may not be an appropriate name but we use this to make the code more consistent) and DNC uses the DynamicAccessor. Both Accessor classes use _content_focus() and _location_focus()(may not be an appropriate name for DNC but we use this to make the code more consistent). The _content_focus() is the same for both classes, but the _location_focus() for DNC is much more complicated as it uses dynamic allocation additionally for write and temporal link additionally for read. Those focus (or attention) mechanisms are implemented in Head classes, and those focuses output a weight vector for each head (write/read). Those weight vectors are then used in _access() to interact with the external memory.

A side note:

The sturcture for Env might look strange as this class was originally designed for reinforcement learning settings as in pytorch-rl; here we use it for providing datasets for supervised learning, so the reward, action and terminal are always left blank in this repo.


Repos we referred to during the development of this repo:


The following paper might be interesting to take a look:)

Neural SLAM: We present an approach for agents to learn representations of a global map from sensor data, to aid their exploration in new environments. To achieve this, we embed procedures mimicking that of traditional Simultaneous Localization and Mapping (SLAM) into the soft attention based addressing of external memory architectures, in which the external memory acts as an internal representation of the environment. This structure encourages the evolution of SLAM-like behaviors inside a completely differentiable deep neural network. We show that this approach can help reinforcement learning agents to successfully explore new environments where long-term memory is essential. We validate our approach in both challenging grid-world environments and preliminary Gazebo experiments. A video of our experiments can be found at: \url{https://goo.gl/RfiSxo}.

@article{zhang2017neural,
  title={Neural SLAM},
  author={Zhang, Jingwei and Tai, Lei and Boedecker, Joschka and Burgard, Wolfram and Liu, Ming},
  journal={arXiv preprint arXiv:1706.09520},
  year={2017}
}


Citation

If you find this library useful and would like to cite it, the following would be appropriate:

@misc{pytorch-dnc,
  author = {Zhang, Jingwei},
  title = {jingweiz/pytorch-dnc},
  url = {https://github.com/jingweiz/pytorch-dnc},
  year = {2017}
}
Owner
Jingwei Zhang
Jingwei Zhang
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022