Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Overview

Neural Turing Machine (NTM) &

Differentiable Neural Computer (DNC) with

pytorch & visdom


  • Sample on-line plotting while training(avg loss)/testing(write/read weights & memory) NTM on the copy task (top 2 rows, 1st row converges to sequentially write to lower locations, 2nd row converges to sequentially write to upper locations) and DNC on the repeat-copy task (3rd row) (the write/read weights here are after location focus so are no longer necessarily normalized within each head by design):

  • Sample loggings while training DNC on the repeat-copy task (we use WARNING as the logging level currently to get rid of the INFO printouts from visdom):
[WARNING ] (MainProcess) <===================================>
[WARNING ] (MainProcess) bash$: python -m visdom.server
[WARNING ] (MainProcess) http://localhost:8097/env/daim_17051000
[WARNING ] (MainProcess) <===================================> Agent:
[WARNING ] (MainProcess) <-----------------------------======> Env:
[WARNING ] (MainProcess) Creating {repeat-copy | } w/ Seed: 123
[WARNING ] (MainProcess) Word     {length}:   {4}
[WARNING ] (MainProcess) Words #  {min, max}: {1, 2}
[WARNING ] (MainProcess) Repeats  {min, max}: {1, 2}
[WARNING ] (MainProcess) <-----------------------------======> Circuit:    {Controller, Accessor}
[WARNING ] (MainProcess) <--------------------------------===> Controller:
[WARNING ] (MainProcess) LSTMController (
  (in_2_hid): LSTMCell(70, 64, bias=1)
)
[WARNING ] (MainProcess) <--------------------------------===> Accessor:   {WriteHead, ReadHead, Memory}
[WARNING ] (MainProcess) <-----------------------------------> WriteHeads: {1 heads}
[WARNING ] (MainProcess) DynamicWriteHead (
  (hid_2_key): Linear (64 -> 16)
  (hid_2_beta): Linear (64 -> 1)
  (hid_2_alloc_gate): Linear (64 -> 1)
  (hid_2_write_gate): Linear (64 -> 1)
  (hid_2_erase): Linear (64 -> 16)
  (hid_2_add): Linear (64 -> 16)
)
[WARNING ] (MainProcess) <-----------------------------------> ReadHeads:  {4 heads}
[WARNING ] (MainProcess) DynamicReadHead (
  (hid_2_key): Linear (64 -> 64)
  (hid_2_beta): Linear (64 -> 4)
  (hid_2_free_gate): Linear (64 -> 4)
  (hid_2_read_mode): Linear (64 -> 12)
)
[WARNING ] (MainProcess) <-----------------------------------> Memory:     {16(batch_size) x 16(mem_hei) x 16(mem_wid)}
[WARNING ] (MainProcess) <-----------------------------======> Circuit:    {Overall Architecture}
[WARNING ] (MainProcess) DNCCircuit (
  (controller): LSTMController (
    (in_2_hid): LSTMCell(70, 64, bias=1)
  )
  (accessor): DynamicAccessor (
    (write_heads): DynamicWriteHead (
      (hid_2_key): Linear (64 -> 16)
      (hid_2_beta): Linear (64 -> 1)
      (hid_2_alloc_gate): Linear (64 -> 1)
      (hid_2_write_gate): Linear (64 -> 1)
      (hid_2_erase): Linear (64 -> 16)
      (hid_2_add): Linear (64 -> 16)
    )
    (read_heads): DynamicReadHead (
      (hid_2_key): Linear (64 -> 64)
      (hid_2_beta): Linear (64 -> 4)
      (hid_2_free_gate): Linear (64 -> 4)
      (hid_2_read_mode): Linear (64 -> 12)
    )
  )
  (hid_to_out): Linear (128 -> 5)
)
[WARNING ] (MainProcess) No Pretrained Model. Will Train From Scratch.
[WARNING ] (MainProcess) <===================================> Training ...
[WARNING ] (MainProcess) Reporting       @ Step: 500 | Elapsed Time: 30.609361887
[WARNING ] (MainProcess) Training Stats:   avg_loss:         0.014866309287
[WARNING ] (MainProcess) Evaluating      @ Step: 500
[WARNING ] (MainProcess) Evaluation        Took: 1.6457400322
[WARNING ] (MainProcess) Iteration: 500; loss_avg: 0.0140423600748
[WARNING ] (MainProcess) Saving Model    @ Step: 500: /home/zhang/ws/17_ws/pytorch-dnc/models/daim_17051000.pth ...
[WARNING ] (MainProcess) Saved  Model    @ Step: 500: /home/zhang/ws/17_ws/pytorch-dnc/models/daim_17051000.pth.
[WARNING ] (MainProcess) Resume Training @ Step: 500
...

What is included?

This repo currently contains the following algorithms:

  • Neural Turing Machines (NTM) [1]
  • Differentiable Neural Computers (DNC) [2]

Tasks:

  • copy
  • repeat-copy

Code structure & Naming conventions

NOTE: we follow the exact code structure as pytorch-rl so as to make the code easily transplantable.

  • ./utils/factory.py

We suggest the users refer to ./utils/factory.py, where we list all the integrated Env, Circuit, Agent into Dict's. All of the core classes are implemented in ./core/. The factory pattern in ./utils/factory.py makes the code super clean, as no matter what type of Circuit you want to train, or which type of Env you want to train on, all you need to do is to simply modify some parameters in ./utils/options.py, then the ./main.py will do it all (NOTE: this ./main.py file never needs to be modified).

  • namings

To make the code more clean and readable, we name the variables using the following pattern:

  • *_vb: torch.autograd.Variable's or a list of such objects
  • *_ts: torch.Tensor's or a list of such objects
  • otherwise: normal python datatypes

Dependencies


How to run:

You only need to modify some parameters in ./utils/options.py to train a new configuration.

  • Configure your training in ./utils/options.py:
  • line 12: add an entry into CONFIGS to define your training (agent_type, env_type, game, circuit_type)
  • line 28: choose the entry you just added
  • line 24-25: fill in your machine/cluster ID (MACHINE) and timestamp (TIMESTAMP) to define your training signature (MACHINE_TIMESTAMP), the corresponding model file and the log file of this training will be saved under this signature (./models/MACHINE_TIMESTAMP.pth & ./logs/MACHINE_TIMESTAMP.log respectively). Also the visdom visualization will be displayed under this signature (first activate the visdom server by type in bash: python -m visdom.server &, then open this address in your browser: http://localhost:8097/env/MACHINE_TIMESTAMP)
  • line 28: to train a model, set mode=1 (training visualization will be under http://localhost:8097/env/MACHINE_TIMESTAMP); to test the model of this current training, all you need to do is to set mode=2 (testing visualization will be under http://localhost:8097/env/MACHINE_TIMESTAMP_test).
  • Run:

python main.py


Implementation Notes:

The difference between NTM & DNC is stated as follows in the DNC[2] paper:

Comparison with the neural Turing machine. The neural Turing machine (NTM) was the predecessor to the DNC described in this work. It used a similar architecture of neural network controller with read–write access to a memory matrix, but differed in the access mechanism used to interface with the memory. In the NTM, content-based addressing was combined with location-based addressing to allow the network to iterate through memory locations in order of their indices (for example, location n followed by n+1 and so on). This allowed the network to store and retrieve temporal sequences in contiguous blocks of memory. However, there were several drawbacks. First, the NTM has no mechanism to ensure that blocks of allocated memory do not overlap and interfere—a basic problem of computer memory management. Interference is not an issue for the dynamic memory allocation used by DNCs, which provides single free locations at a time, irrespective of index, and therefore does not require contiguous blocks. Second, the NTM has no way of freeing locations that have already been written to and, hence, no way of reusing memory when processing long sequences. This problem is addressed in DNCs by the free gates used for de-allocation. Third, sequential information is preserved only as long as the NTM continues to iterate through consecutive locations; as soon as the write head jumps to a different part of the memory (using content-based addressing) the order of writes before and after the jump cannot be recovered by the read head. The temporal link matrix used by DNCs does not suffer from this problem because it tracks the order in which writes were made.

We thus make some effort to put those two together in a combined codebase. The classes implemented have the following hierarchy:

  • Agent
    • Env
    • Circuit
      • Controller
      • Accessor
        • WriteHead
        • ReadHead
        • Memory

The part where NTM & DNC differs is the Accessor, where in the code NTM uses the StaticAccessor(may not be an appropriate name but we use this to make the code more consistent) and DNC uses the DynamicAccessor. Both Accessor classes use _content_focus() and _location_focus()(may not be an appropriate name for DNC but we use this to make the code more consistent). The _content_focus() is the same for both classes, but the _location_focus() for DNC is much more complicated as it uses dynamic allocation additionally for write and temporal link additionally for read. Those focus (or attention) mechanisms are implemented in Head classes, and those focuses output a weight vector for each head (write/read). Those weight vectors are then used in _access() to interact with the external memory.

A side note:

The sturcture for Env might look strange as this class was originally designed for reinforcement learning settings as in pytorch-rl; here we use it for providing datasets for supervised learning, so the reward, action and terminal are always left blank in this repo.


Repos we referred to during the development of this repo:


The following paper might be interesting to take a look:)

Neural SLAM: We present an approach for agents to learn representations of a global map from sensor data, to aid their exploration in new environments. To achieve this, we embed procedures mimicking that of traditional Simultaneous Localization and Mapping (SLAM) into the soft attention based addressing of external memory architectures, in which the external memory acts as an internal representation of the environment. This structure encourages the evolution of SLAM-like behaviors inside a completely differentiable deep neural network. We show that this approach can help reinforcement learning agents to successfully explore new environments where long-term memory is essential. We validate our approach in both challenging grid-world environments and preliminary Gazebo experiments. A video of our experiments can be found at: \url{https://goo.gl/RfiSxo}.

@article{zhang2017neural,
  title={Neural SLAM},
  author={Zhang, Jingwei and Tai, Lei and Boedecker, Joschka and Burgard, Wolfram and Liu, Ming},
  journal={arXiv preprint arXiv:1706.09520},
  year={2017}
}


Citation

If you find this library useful and would like to cite it, the following would be appropriate:

@misc{pytorch-dnc,
  author = {Zhang, Jingwei},
  title = {jingweiz/pytorch-dnc},
  url = {https://github.com/jingweiz/pytorch-dnc},
  year = {2017}
}
Owner
Jingwei Zhang
Jingwei Zhang
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022