SigOpt wrappers for scikit-learn methods

Overview

SigOpt + scikit-learn Interfacing

Build Status

This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together

Getting Started

Install the sigopt_sklearn python modules with pip install sigopt_sklearn.

Sign up for an account at https://sigopt.com. To use the interfaces, you'll need your API token from the API tokens page.

SigOptSearchCV

The simplest use case for SigOpt in conjunction with scikit-learn is optimizing estimator hyperparameters using cross validation. A short example that tunes the parameters of an SVM on a small dataset is provided below

from sklearn import svm, datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'

iris = datasets.load_iris()

# define parameter domains
svc_parameters  = {'kernel': ['linear', 'rbf'], 'C': (0.5, 100)}

# define sklearn estimator
svr = svm.SVC()

# define SigOptCV search strategy
clf = SigOptSearchCV(svr, svc_parameters, cv=5,
    client_token=client_token, n_jobs=5, n_iter=20)

# perform CV search for best parameters and fits estimator
# on all data using best found configuration
clf.fit(iris.data, iris.target)

# clf.predict() now uses best found estimator
# clf.best_score_ contains CV score for best found estimator
# clf.best_params_ contains best found param configuration

The objective optimized by default is is the default score associated with an estimator. A custom objective can be used by passing the scoring option to the SigOptSearchCV constructor. Shown below is an example that uses the f1_score already implemented in sklearn

from sklearn.metrics import f1_score, make_scorer
f1_scorer = make_scorer(f1_score)

# define SigOptCV search strategy
clf = SigOptSearchCV(svr, svc_parameters, cv=5, scoring=f1_scorer,
    client_token=client_token, n_jobs=5, n_iter=50)

# perform CV search for best parameters
clf.fit(X, y)

XGBoostClassifier

SigOptSearchCV also works with XGBoost's XGBClassifier wrapper. A hyperparameter search over XGBClassifier models can be done using the same interface

import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn import datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'
iris = datasets.load_iris()

xgb_params = {
  'learning_rate': (0.01, 0.5),
  'n_estimators': (10, 50),
  'max_depth': (3, 10),
  'min_child_weight': (6, 12),
  'gamma': (0, 0.5),
  'subsample': (0.6, 1.0),
  'colsample_bytree': (0.6, 1.)
}

xgbc = XGBClassifier()

clf = SigOptSearchCV(xgbc, xgb_params, cv=5,
    client_token=client_token, n_jobs=5, n_iter=70, verbose=1)

clf.fit(iris.data, iris.target)

SigOptEnsembleClassifier

This class concurrently trains and tunes several classification models within sklearn to facilitate model selection efforts when investigating new datasets.

You'll need to install the sigopt_sklearn library with the extra requirements of xgboost for this aspect of the library to work:

pip install sigopt_sklearn[ensemble]

A short example, using an activity recognition dataset is provided below We also have a video tutorial outlining how to run this example here:

SigOpt scikit-learn Tutorial

# Human Activity Recognition Using Smartphone
# https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
wget https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI%20HAR%20Dataset.zip
unzip UCI\ HAR\ Dataset.zip
cd UCI\ HAR\ Dataset
import numpy as np
import pandas as pd
from sigopt_sklearn.ensemble import SigOptEnsembleClassifier

def load_datafile(filename):
  X = []
  with open(filename, 'r') as f:
    for l in f:
      X.append(np.array([float(v) for v in l.split()]))
  X = np.vstack(X)
  return X

X_train = load_datafile('train/X_train.txt')
y_train = load_datafile('train/y_train.txt').ravel()
X_test = load_datafile('test/X_test.txt')
y_test = load_datafile('test/y_test.txt').ravel()

# fit and tune several classification models concurrently
# find your SigOpt client token here : https://sigopt.com/tokens
sigopt_clf = SigOptEnsembleClassifier()
sigopt_clf.parallel_fit(X_train, y_train, est_timeout=(40 * 60),
    client_token='<YOUR_CLIENT_TOKEN>')

# compare model performance on hold out set
ensemble_train_scores = [est.score(X_train,y_train) for est in sigopt_clf.estimator_ensemble]
ensemble_test_scores = [est.score(X_test,y_test) for est in sigopt_clf.estimator_ensemble]
data = sorted(zip([est.__class__.__name__
                        for est in sigopt_clf.estimator_ensemble], ensemble_train_scores, ensemble_test_scores),
                        reverse=True, key=lambda x: (x[2], x[1]))
pd.DataFrame(data, columns=['Classifier ALGO.', 'Train ACC.', 'Test ACC.'])

CV Fold Timeouts

SigOptSearchCV performs evaluations on cv folds in parallel using joblib. Timeouts are now supported in the master branch of joblib and SigOpt can use this timeout information to learn to avoid hyperparameter configurations that are too slow.

from sklearn import svm, datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'
dataset = datasets.fetch_20newsgroups_vectorized()
X = dataset.data
y = dataset.target

# define parameter domains
svc_parameters  = {
  'kernel': ['linear', 'rbf'],
  'C': (0.5, 100),
  'max_iter': (10, 200),
  'tol': (1e-2, 1e-6)
}
svr = svm.SVC()

# SVM fitting can be quite slow, so we set timeout = 180 seconds
# for each fit.  SigOpt will then avoid configurations that are too slow
clf = SigOptSearchCV(svr, svc_parameters, cv=5, opt_timeout=180,
    client_token=client_token, n_jobs=5, n_iter=40)

clf.fit(X, y)

Categoricals

SigOptSearchCV supports categorical parameters specified as list of string as the kernel parameter is in the SVM example:

svc_parameters  = {'kernel': ['linear', 'rbf'], 'C': (0.5, 100)}

SigOpt also supports non-string valued categorical parameters. For example the hidden_layer_sizes parameter in the MLPRegressor example below,

parameters = {
  'activation': ['relu', 'tanh', 'logistic'],
  'solver': ['lbfgs', 'adam'],
  'alpha': (0.0001, 0.01),
  'learning_rate_init': (0.001, 0.1),
  'power_t': (0.001, 1.0),
  'beta_1': (0.8, 0.999),
  'momentum': (0.001, 1.0),
  'beta_2': (0.8, 0.999),
  'epsilon': (0.00000001, 0.0001),
  'hidden_layer_sizes': {
    'shallow': (100,),
    'medium': (10, 10),
    'deep': (10, 10, 10, 10)
  }
}
nn = MLPRegressor()
clf = SigOptSearchCV(nn, parameters, cv=5, cv_timeout=240,
    client_token=client_token, n_jobs=5, n_iter=40)

clf.fit(X, y)
Owner
SigOpt
SigOpt
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022