SigOpt wrappers for scikit-learn methods

Overview

SigOpt + scikit-learn Interfacing

Build Status

This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together

Getting Started

Install the sigopt_sklearn python modules with pip install sigopt_sklearn.

Sign up for an account at https://sigopt.com. To use the interfaces, you'll need your API token from the API tokens page.

SigOptSearchCV

The simplest use case for SigOpt in conjunction with scikit-learn is optimizing estimator hyperparameters using cross validation. A short example that tunes the parameters of an SVM on a small dataset is provided below

from sklearn import svm, datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'

iris = datasets.load_iris()

# define parameter domains
svc_parameters  = {'kernel': ['linear', 'rbf'], 'C': (0.5, 100)}

# define sklearn estimator
svr = svm.SVC()

# define SigOptCV search strategy
clf = SigOptSearchCV(svr, svc_parameters, cv=5,
    client_token=client_token, n_jobs=5, n_iter=20)

# perform CV search for best parameters and fits estimator
# on all data using best found configuration
clf.fit(iris.data, iris.target)

# clf.predict() now uses best found estimator
# clf.best_score_ contains CV score for best found estimator
# clf.best_params_ contains best found param configuration

The objective optimized by default is is the default score associated with an estimator. A custom objective can be used by passing the scoring option to the SigOptSearchCV constructor. Shown below is an example that uses the f1_score already implemented in sklearn

from sklearn.metrics import f1_score, make_scorer
f1_scorer = make_scorer(f1_score)

# define SigOptCV search strategy
clf = SigOptSearchCV(svr, svc_parameters, cv=5, scoring=f1_scorer,
    client_token=client_token, n_jobs=5, n_iter=50)

# perform CV search for best parameters
clf.fit(X, y)

XGBoostClassifier

SigOptSearchCV also works with XGBoost's XGBClassifier wrapper. A hyperparameter search over XGBClassifier models can be done using the same interface

import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn import datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'
iris = datasets.load_iris()

xgb_params = {
  'learning_rate': (0.01, 0.5),
  'n_estimators': (10, 50),
  'max_depth': (3, 10),
  'min_child_weight': (6, 12),
  'gamma': (0, 0.5),
  'subsample': (0.6, 1.0),
  'colsample_bytree': (0.6, 1.)
}

xgbc = XGBClassifier()

clf = SigOptSearchCV(xgbc, xgb_params, cv=5,
    client_token=client_token, n_jobs=5, n_iter=70, verbose=1)

clf.fit(iris.data, iris.target)

SigOptEnsembleClassifier

This class concurrently trains and tunes several classification models within sklearn to facilitate model selection efforts when investigating new datasets.

You'll need to install the sigopt_sklearn library with the extra requirements of xgboost for this aspect of the library to work:

pip install sigopt_sklearn[ensemble]

A short example, using an activity recognition dataset is provided below We also have a video tutorial outlining how to run this example here:

SigOpt scikit-learn Tutorial

# Human Activity Recognition Using Smartphone
# https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
wget https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI%20HAR%20Dataset.zip
unzip UCI\ HAR\ Dataset.zip
cd UCI\ HAR\ Dataset
import numpy as np
import pandas as pd
from sigopt_sklearn.ensemble import SigOptEnsembleClassifier

def load_datafile(filename):
  X = []
  with open(filename, 'r') as f:
    for l in f:
      X.append(np.array([float(v) for v in l.split()]))
  X = np.vstack(X)
  return X

X_train = load_datafile('train/X_train.txt')
y_train = load_datafile('train/y_train.txt').ravel()
X_test = load_datafile('test/X_test.txt')
y_test = load_datafile('test/y_test.txt').ravel()

# fit and tune several classification models concurrently
# find your SigOpt client token here : https://sigopt.com/tokens
sigopt_clf = SigOptEnsembleClassifier()
sigopt_clf.parallel_fit(X_train, y_train, est_timeout=(40 * 60),
    client_token='<YOUR_CLIENT_TOKEN>')

# compare model performance on hold out set
ensemble_train_scores = [est.score(X_train,y_train) for est in sigopt_clf.estimator_ensemble]
ensemble_test_scores = [est.score(X_test,y_test) for est in sigopt_clf.estimator_ensemble]
data = sorted(zip([est.__class__.__name__
                        for est in sigopt_clf.estimator_ensemble], ensemble_train_scores, ensemble_test_scores),
                        reverse=True, key=lambda x: (x[2], x[1]))
pd.DataFrame(data, columns=['Classifier ALGO.', 'Train ACC.', 'Test ACC.'])

CV Fold Timeouts

SigOptSearchCV performs evaluations on cv folds in parallel using joblib. Timeouts are now supported in the master branch of joblib and SigOpt can use this timeout information to learn to avoid hyperparameter configurations that are too slow.

from sklearn import svm, datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'
dataset = datasets.fetch_20newsgroups_vectorized()
X = dataset.data
y = dataset.target

# define parameter domains
svc_parameters  = {
  'kernel': ['linear', 'rbf'],
  'C': (0.5, 100),
  'max_iter': (10, 200),
  'tol': (1e-2, 1e-6)
}
svr = svm.SVC()

# SVM fitting can be quite slow, so we set timeout = 180 seconds
# for each fit.  SigOpt will then avoid configurations that are too slow
clf = SigOptSearchCV(svr, svc_parameters, cv=5, opt_timeout=180,
    client_token=client_token, n_jobs=5, n_iter=40)

clf.fit(X, y)

Categoricals

SigOptSearchCV supports categorical parameters specified as list of string as the kernel parameter is in the SVM example:

svc_parameters  = {'kernel': ['linear', 'rbf'], 'C': (0.5, 100)}

SigOpt also supports non-string valued categorical parameters. For example the hidden_layer_sizes parameter in the MLPRegressor example below,

parameters = {
  'activation': ['relu', 'tanh', 'logistic'],
  'solver': ['lbfgs', 'adam'],
  'alpha': (0.0001, 0.01),
  'learning_rate_init': (0.001, 0.1),
  'power_t': (0.001, 1.0),
  'beta_1': (0.8, 0.999),
  'momentum': (0.001, 1.0),
  'beta_2': (0.8, 0.999),
  'epsilon': (0.00000001, 0.0001),
  'hidden_layer_sizes': {
    'shallow': (100,),
    'medium': (10, 10),
    'deep': (10, 10, 10, 10)
  }
}
nn = MLPRegressor()
clf = SigOptSearchCV(nn, parameters, cv=5, cv_timeout=240,
    client_token=client_token, n_jobs=5, n_iter=40)

clf.fit(X, y)
Owner
SigOpt
SigOpt
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023