Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

Overview

IROS21 information

To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in Evaluations.md.

To test the different Waypoint Generators, follow the steps in waypoint_eval.md

DRL agents are located in the agents folder.

Arena-MARL

A flexible, high-performance 2D simulator with configurable agents, multiple sensors, and benchmark scenarios for testing robotic navigation in multi-agent settings.

Arena-MARL uses Flatland as the core simulator and is a modular high-level library for end-to-end experiments in embodied AI -- defining embodied AI tasks (e.g. navigation, obstacle avoidance, behavior cloning), training agents (via imitation or reinforcement learning, or no learning at all using conventional approaches like DWA, TEB or MPC), and benchmarking their performance on the defined tasks using standard metrics.

Before Training After Training

What is this repository for?

Train DRL agents on ROS compatible simulations for autonomous navigation in highly dynamic environments. Flatland-DRL integration is inspired by Ronja Gueldenring's work: drl_local_planner_ros_stable_baselines. Test state of the art local and global planners in ROS environments both in simulation and on real hardware. Following features are included:

  • Setup to train a local planner with reinforcement learning approaches from stable baselines3
  • Training in simulator Flatland in train mode
  • Include realistic behavior patterns and semantic states of obstacles (speaking, running, etc.)
  • Include different obstacles classes (other robots, vehicles, types of persons, etc.)
  • Implementation of intermediate planner classes to combine local DRL planner with global map-based planning of ROS Navigation stack
  • Testing a variety of planners (learning based and model based) within specific scenarios in test mode
  • Modular structure for extension of new functionalities and approaches

Start Guide

We recommend starting with the start guide which contains all information you need to know to start off with this project including installation on Linux and Windows as well as tutorials to start with.

  • For Mac, please refer to our Docker.

1. Installation

Please refer to Installation.md for detailed explanations about the installation process.

1.1. Docker

We provide a Docker file to run our code on other operating systems. Please refer to Docker.md for more information.

2. Usage

DRL Training

Please refer to DRL-Training.md for detailed explanations about agent, policy and training setups.

Scenario Creation with the arena-scenario-gui

To create complex, collaborative scenarios for training and/or evaluation purposes, please refer to the repo arena-scenario-gui. This application provides you with an user interface to easily create complex scenarios with multiple dynamic and static obstacles by drawing and other simple UI elements like dragging and dropping. This will save you a lot of time in creating complex scenarios for you individual use cases.

Used third party repos:

Owner
Robotics, Autonomous Navigation and Computer Vision Research
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022