Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Overview

Requirement

  • Python3.6
  • PyTorch 0.4
  • configparser

How to run

  • run python prepare_datasets_DRIVE.py to generate hdf5 file of training data
  • run cd src
  • run python retinaNN_training.py to train
  • run python retinaNN_predict.py to test

Parameter defination

  • parameters (path, patch size, et al.) are defined in "configuration.txt"
  • training parameters are defined in src/retinaNN_training.py line 49 t 84 with notes "=====Define parameters here ========="

Pretrained weights

  • pretrained weights are stored in "src/checkpoint"
  • results are stored in "test/"

Results

The results reported in the ./test folder are referred to the trained model which reported the minimum validation loss. The ./test folder includes:

  • Model:
    • test_model.png schematic representation of the neural network
    • test_architecture.json description of the model in json format
    • test_best_weights.h5 weights of the model which reported the minimum validation loss, as HDF5 file
    • test_last_weights.h5 weights of the model at last epoch (150th), as HDF5 file
    • test_configuration.txt configuration of the parameters of the experiment
  • Experiment results:
    • performances.txt summary of the test results, including the confusion matrix
    • Precision_recall.png the precision-recall plot and the corresponding Area Under the Curve (AUC)
    • ROC.png the Receiver Operating Characteristic (ROC) curve and the corresponding AUC
    • all_*.png the 20 images of the pre-processed originals, ground truth and predictions relative to the DRIVE testing dataset
    • sample_input_*.png sample of 40 patches of the pre-processed original training images and the corresponding ground truth
    • test_Original_GroundTruth_Prediction*.png from top to bottom, the original pre-processed image, the ground truth and the prediction. In the predicted image, each pixel shows the vessel predicted probability, no threshold is applied.

The following table compares this method to other recent techniques, which have published their performance in terms of Area Under the ROC curve (AUC ROC) on the DRIVE dataset.

Method AUC ROC on DRIVE
Soares et al [1] .9614
Azzopardi et al. [2] .9614
Osareh et al [3] .9650
Roychowdhury et al. [4] .9670
Fraz et al. [5] .9747
Qiaoliang et al. [6] .9738
Melinscak et al. [7] .9749
Liskowski et al.^ [8] .9790
orobix .9790
this method .9794

Owner
Juntang Zhuang
Juntang Zhuang
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022