The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

Related tags

Deep LearningLSGM
Overview

PWC PWC

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

Arash Vahdat*·Karsten Kreis*·Jan Kautz

(*equal contribution)

Project Page


LSGM trains a score-based generative model (a.k.a. a denoising diffusion model) in the latent space of a variational autoencoder. It currently achieves state-of-the-art generative performance on several image datasets.

Requirements

LSGM is built in Python 3.8 using PyTorch 1.8.0. Please use the following command to install the requirements:

pip install -r requirements.txt

Optionally, you can also install NVIDIA Apex. When apex is installed, our training scripts use the Adam optimizer from this library, which is faster than Pytorch's native Adam.

Set up file paths and data

This work builds on top of our previous work NVAE. Please follow the instructions in the NVAE repository to prepare your data for training and evaluation. Small datasets such as CIFAR-10, MNIST, and OMNIGLOT do not require any data preparation as they will be downloaded automatically. Below, $DATA_DIR indicates the path to a data directory that will contain all the datasets. $CHECKPOINT_DIR is a directory used for storing checkpoints, and $EXPR_ID is a unique ID for the experiment. $IP_ADDR is the IP address of the machine that will host the process with rank 0 during training (see here). $NODE_RANK is the index of each node among all the nodes that are running the job (setting $IP_ADDR and $NODE_RANK is only required for multi-node training). $FID_STATS_DIR is a directory containing the FID statistics computed on each dataset (see below).

Precomputing feature statistics on each dataset for FID evaluation

You can use the following command to compute FID statistics on the CIFAR-10 dataset as an example:

python scripts/precompute_fid_statistics.py --data $DATA_DIR/cifar10 --dataset cifar10 --fid_dir $FID_STATS_DIR

which will save the FID related statistics in a directory under $FID_STATS_DIR. For other datasets, simply change --data and --dataset accordingly.

Training and evaluation

Training LSGM is often done in two stages. In the first stage, we train our VAE backbone assuming that the prior is a standard Normal distribution. In the second stage, we swap the standard Normal prior with a score-based prior and we jointly train both the VAE backbone and the score-based prior in an end-to-end fashion. Please check Appendix G in our paper for implementation details. Below, we provide commands used for both stages. If for any reason your training is stopped, use the exact same commend with the addition of --cont_training to continue training from the last saved checkpoint. If you observe NaN, continuing the training using this flag will usually not fix the NaN issue.

CIFAR-10

We train 3 different VAEs with the following commands (see Table 7 in the paper).

  • 20 group NVAE with full KL annealing for the "balanced" model (using 8 16GB V100 GPUs):
python train_vae.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID/vae1 --dataset cifar10 \
    --num_channels_enc 128 --num_channels_dec 128 --num_postprocess_cells 2 --num_preprocess_cells 2 \
    --num_latent_scales 1 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --num_latent_per_group 9 --num_groups_per_scale 20 --epochs 600 --batch_size 32 \
    --weight_decay_norm 1e-2 --num_nf 0 --kl_anneal_portion 0.5 --kl_max_coeff 1.0 --channel_mult 1 2 --seed 1 \
    --arch_instance res_bnswish --num_process_per_node 8 --use_se
  • 20 group NVAE with partial KL annealing for the model with best FID (using 8 16GB V100 GPUs):
python train_vae.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID/vae2 --dataset cifar10 \
    --num_channels_enc 128 --num_channels_dec 128 --num_postprocess_cells 2 --num_preprocess_cells 2 \
    --num_latent_scales 1 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --num_latent_per_group 9 --num_groups_per_scale 20 --epochs 400 --batch_size 32 \
    --weight_decay_norm 1e-2 --num_nf 0 --kl_anneal_portion 1.0 --kl_max_coeff 0.7 --channel_mult 1 2 --seed 1 \
    --arch_instance res_bnswish --num_process_per_node 8 --use_se
  • 4 group NVAE with partial KL annealing for the model with best NLL (using 4 16GB V100 GPUs):
python train_vae.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID/vae3 --dataset cifar10 \
    --num_channels_enc 256 --num_channels_dec 256 --num_postprocess_cells 3 --num_preprocess_cells 3 \
    --num_latent_scales 1 --num_cell_per_cond_enc 3 --num_cell_per_cond_dec 3 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --num_latent_per_group 45 --num_groups_per_scale 4 --epochs 400 --batch_size 64 \
    --weight_decay_norm 1e-2 --num_nf 2 --kl_anneal_portion 1.0 --kl_max_coeff 0.7 --channel_mult 1 2 --seed 1 \
    --arch_instance res_bnswish --num_process_per_node 4 --use_se

With the resulting VAE checkpoints, we can train the three different LSGMs. The models are trained with the following commands on 2 nodes with 8 32GB V100 GPUs each.

  • LSGM (balanced):
mpirun --allow-run-as-root -np 2 -npernode 1 bash -c 
    'python train_vada.py --fid_dir $FID_STATS_DIR --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR \
    --save $EXPR_ID/lsgm1 --vae_checkpoint $EXPR_ID/vae1/checkpoint.pt --train_vae --custom_conv_dae --apply_sqrt2_res \
    --fir --dae_arch ncsnpp --embedding_scale 1000 --dataset cifar10 --learning_rate_dae 1e-4 \
    --learning_rate_min_dae 1e-4 --epochs 1875 --dropout 0.2 --batch_size 16 --num_channels_dae 512 --num_scales_dae 3 \
    --num_cell_per_scale_dae 8 --sde_type vpsde --beta_start 0.1 --beta_end 20.0 --sigma2_0 0.0 \
    --weight_decay_norm_dae 1e-2 --weight_decay_norm_vae 1e-2 --time_eps 0.01 --train_ode_eps 1e-6 --eval_ode_eps 1e-6 \
    --train_ode_solver_tol 1e-5 --eval_ode_solver_tol 1e-5 --iw_sample_p drop_all_iw --iw_sample_q reweight_p_samples \
    --arch_instance_dae res_ho_attn --num_process_per_node 8 --use_se --node_rank $NODE_RANK --num_proc_node 2 \
    --master_address $IP_ADDR '
  • LSGM (best FID):
mpirun --allow-run-as-root -np 2 -npernode 1 bash -c 
    'python train_vada.py --fid_dir $FID_STATS_DIR --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR \
    --save $EXPR_ID/lsgm2 --vae_checkpoint $EXPR_ID/vae2/checkpoint.pt --train_vae --custom_conv_dae --apply_sqrt2_res \
    --fir --cont_kl_anneal --dae_arch ncsnpp --embedding_scale 1000 --dataset cifar10 --learning_rate_dae 1e-4 \
    --learning_rate_min_dae 1e-4 --epochs 1875 --dropout 0.2 --batch_size 16 --num_channels_dae 512 --num_scales_dae 3 \
    --num_cell_per_scale_dae 8 --sde_type vpsde --beta_start 0.1 --beta_end 20.0 --sigma2_0 0.0 \
    --weight_decay_norm_dae 1e-2 --weight_decay_norm_vae 1e-2 --time_eps 0.01 --train_ode_eps 1e-6 --eval_ode_eps 1e-6 \
    --train_ode_solver_tol 1e-5 --eval_ode_solver_tol 1e-5 --iw_sample_p drop_all_iw --iw_sample_q reweight_p_samples \
    --arch_instance_dae res_ho_attn --num_process_per_node 8 --use_se --node_rank $NODE_RANK --num_proc_node 2 \
    --master_address $IP_ADDR '
  • LSGM (best NLL):
mpirun --allow-run-as-root -np 2 -npernode 1 bash -c 
    'python train_vada.py --fid_dir $FID_STATS_DIR --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR \
    --save $EXPR_ID/lsgm3 --vae_checkpoint $EXPR_ID/vae3/checkpoint.pt --train_vae --apply_sqrt2_res --fir \
    --cont_kl_anneal --dae_arch ncsnpp --embedding_scale 1000 --dataset cifar10 --learning_rate_dae 1e-4 \
    --learning_rate_min_dae 1e-4 --epochs 1875 --dropout 0.2 --batch_size 16 --num_channels_dae 512 --num_scales_dae 3 \
    --num_cell_per_scale_dae 8 --sde_type geometric_sde --sigma2_min 3e-5 --sigma2_max 0.999 --sigma2_0 3e-5 \
    --weight_decay_norm_dae 1e-2 --weight_decay_norm_vae 1e-2 --time_eps 0.0 --train_ode_eps 1e-6 --eval_ode_eps 1e-6 \
    --train_ode_solver_tol 1e-5 --eval_ode_solver_tol 1e-5 --iw_sample_p ll_uniform --iw_sample_q reweight_p_samples \
    --arch_instance_dae res_ho_attn --num_process_per_node 8 --use_se --node_rank $NODE_RANK --num_proc_node 2 \
    --master_address \${NGC_MASTER_ADDR} '

The following command can be used to evaluate the negative variational bound on the data log-likelihood as well as the FID score for any of the LSGMs trained on CIFAR-10 (on 2 nodes with 8 32GB V100 GPUs each):

mpirun --allow-run-as-root -np 2 -npernode 1 bash -c 
    'python evaluate_vada.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID/eval --eval_mode evaluate \
    --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint.pt --fid_dir $FID_STATS_DIR --num_process_per_node 8 \
    --nll_ode_eval --fid_ode_eval --ode_eps 1e-6 --ode_solver_tol 1e-5 --batch_size 32 --node_rank $NODE_RANK \
    --num_proc_node 2 --master_address \${NGC_MASTER_ADDR} '
MNIST

We train the NVAE component using the following command on 2 16GB V100 GPUs:

python train_vae.py --data $DATA_DIR/mnist --root $CHECKPOINT_DIR --save $EXPR_ID/vae --dataset mnist \
      --batch_size 100 --epochs 200 --num_latent_scales 1 --num_groups_per_scale 2 --num_postprocess_cells 3 \
      --num_preprocess_cells 3 --num_cell_per_cond_enc 1 --num_cell_per_cond_dec 1 --num_latent_per_group 20 \
      --num_preprocess_blocks 2 --num_postprocess_blocks 2 --weight_decay_norm 1e-2 --num_channels_enc 64 \
      --num_channels_dec 64 --decoder_dist bin --kl_anneal_portion 1.0 --kl_max_coeff 0.7 --channel_mult 1 2 2 \
      --num_nf 0 --arch_instance res_mbconv --num_process_per_node 2 --use_se

We train LSGM using the following command on 4 16GB V100 GPUs:

python train_vada.py --data $DATA_DIR/mnist --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm --dataset mnist --epochs 800 \
        --dropout 0.2 --batch_size 32 --num_scales_dae 2 --weight_decay_norm_vae 1e-2 \
        --weight_decay_norm_dae 0. --num_channels_dae 256 --train_vae  --num_cell_per_scale_dae 8 \
        --learning_rate_dae 3e-4 --learning_rate_min_dae 3e-4 --train_ode_solver_tol 1e-5 --cont_kl_anneal  \
        --sde_type vpsde --iw_sample_p ll_iw --num_process_per_node 4 --use_se \
        --vae_checkpoint $CHECKPOINT_DIR/EXPR_ID/vae/checkpoint.pt  --dae_arch ncsnpp --embedding_scale 1000 \
        --mixing_logit_init -6 --warmup_epochs 20 --drop_inactive_var --skip_final_eval --fid_dir $FID_STATS_DIR

To evaluate the negative variational bound on the data log-likelihood on 4 16GB V100 GPUs the following command can be used:

python evaluate_vada.py --data $DATA_DIR/mnist --root $CHECKPOINT_DIR --save $EXPR_ID/eval --eval_mode evaluate \
        --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint.pt --num_process_per_node 4 --nll_ode_eval \
        --ode_eps 1e-5 --ode_solver_tol 1e-5 --batch_size 128
OMNIGLOT

We train the NVAE component using the following command on 2 16GB V100 GPUs.

python train_vae.py --data $DATA_DIR/omniglot --root $CHECKPOINT_DIR --save $EXPR_ID/vae --dataset omniglot \
      --batch_size 64 --epochs 200 --num_latent_scales 1 --num_groups_per_scale 3 --num_postprocess_cells 2 \
      --num_preprocess_cells 2 --num_cell_per_cond_enc 3 --num_cell_per_cond_dec 3 --num_latent_per_group 20 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_channels_enc 64 --num_channels_dec 64 \
      --weight_decay_norm 1e-2 --decoder_dist bin --kl_anneal_portion 1.0 --kl_max_coeff 1.0 --channel_mult 1 2 \
      --num_nf 0 --arch_instance res_mbconv --num_process_per_node 2 --use_se

We train LSGM using the following command on 4 16GB V100 GPUs.

python train_vada.py --data $DATA_DIR/omniglot --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm --dataset omniglot --epochs 1500 \
        --dropout 0.2 --batch_size 32 --num_channels_dae 256 --num_scales_dae 3 --weight_decay_norm_vae 1e-2 \
        --weight_decay_norm_dae 1e-3 --train_vae  --num_cell_per_scale_dae 8 --learning_rate_dae 3e-4 \
        --learning_rate_min_dae 3e-4 --train_ode_solver_tol 1e-5 --cont_kl_anneal  --sde_type vpsde \
        --iw_sample_p ll_iw --num_process_per_node 4 --use_se \
        --vae_checkpoint $EXPR_ID/vae/checkpoint.pt  --dae_arch ncsnpp --embedding_scale 1000 --mixing_logit_init -6 \
        --warmup_epochs 20 --drop_inactive_var --skip_final_eval --fid_dir $FID_STATS_DIR

To evaluate the negative variational bound on the data log-likelihood on 4 16GB V100 GPUs the following command can be used:

python evaluate_vada.py --data $DATA_DIR/omniglot --root $CHECKPOINT_DIR --save $EXPR_ID/eval --eval_mode evaluate \
        --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint.pt --num_process_per_node 4 --nll_ode_eval \
        --ode_eps 1e-5 --ode_solver_tol 1e-5 --batch_size 128
CelebA-HQ-256 Quantitative Model

We train the NVAE component using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vae.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/vae --dataset celeba_256 \
    --num_channels_enc 64 --num_channels_dec 64 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \
    --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --weight_decay_norm 3e-2 --num_latent_scales 3 --num_groups_per_scale 8 --num_nf 2 \
    --batch_size 4 --kl_anneal_portion 1. --kl_max_coeff 1. --channel_mult 1 1 2 4 --num_x_bits 5 --decoder_dist dml \
    --progressive_input_vae input_skip --arch_instance res_mbconv --num_process_per_node 8 --use_se \
    --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

We train the LSGM using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vada.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm --dataset celeba_256 \
    --epochs 1000 --dropout 0.2 --num_channels_dae 256 --num_scales_dae 4 --train_vae  --weight_decay_norm_vae 1e-1 \
    --weight_decay_norm_dae 1e-2 --fir  --num_cell_per_scale_dae 8 --learning_rate_dae 1e-4 --learning_rate_min_dae 1e-4 \
    --batch_size 4 --sde_type vpsde --iw_sample_p drop_sigma2t_iw --iw_sample_q ll_iw --disjoint_training \
    --num_process_per_node 8 --use_se --vae_checkpoint $EXPR_ID/vae/checkpoint.pt  --dae_arch ncsnpp \
    --embedding_scale 1000 --mixing_logit_init -6 --warmup_epochs 20 --drop_inactive_var --skip_final_eval \
    --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

To evaluate the negative variational bound on the data log-likelihood, we use the following command on similarly 2 nodes:

mpirun --allow-run-as-root -np 2 -npernode 1 bash -c \
    'python evaluate_vada.py  --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/eval_nll \
     --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint_fid.pt --num_process_per_node 8 --eval_mode evaluate \
     --nll_ode_eval --ode_eps 1e-5 --ode_solver_tol 1e-5 --batch_size 64 \
     --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

And, to evaluate the FID score, we use the following command on similarly 2 nodes:

mpirun --allow-run-as-root -np 2 -npernode 1 bash -c \
    'python evaluate_vada.py  --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/eval_fid \
     --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint_fid.pt --num_process_per_node 8 --eval_mode evaluate \
     --fid_ode_eval --ode_eps 1e-5 --ode_solver_tol 1e-2 --batch_size 64 --vae_train_mode \
     --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

Note that for the FID evaluation on this model, we observed that --ode_solver_tol 1e-5 gives a slightly worse FID score with much slower sampling speed (see Fig. 4 in the paper).

CelebA-HQ-256 Qualitative Model

We trained the qualitative model on the CelebA-HQ-256 dataset in 3 stages. In the first stage, we only trained the NVAE component, and in the second stage, we trained an LSGM (i.e., both the NVAE backbone and the SGM prior jointly) with the geometric VPSDE for likelihood weighting, similar to our other models. However, in the third stage, we discarded the SGM prior model and re-trained a new SGM prior with the reweighted objective. In this stage, we only trained the SGM prior and left the NVAE component fixed from the second stage.

We train the NVAE component using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vae.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/vae --dataset celeba_256 \
    --num_channels_enc 64 --num_channels_dec 64 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \
    --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --weight_decay_norm 3e-2 --num_latent_scales 2 --num_groups_per_scale 10 --num_nf 2 \
    --batch_size 4 --kl_anneal_portion 1. --kl_max_coeff 1. --channel_mult 1 1 2 --num_x_bits 5 --decoder_dist dml \
    --progressive_input_vae input_skip --arch_instance res_mbconv --num_process_per_node 8 --use_se \
    --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

We train LSGM (both VAE and SGM prior jointly) in the second stage using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vada.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm --dataset celeba_256 \
     --epochs 1000 --dropout 0.2 --num_channels_dae 256 --num_scales_dae 5 --train_vae  --weight_decay_norm_vae 1e-1 \
     --weight_decay_norm_dae 1e-2 --fir  --num_cell_per_scale_dae 8 --learning_rate_dae 1e-4 --learning_rate_min_dae 1e-4 \
     --learning_rate_vae 8e-5 --batch_size 4 --sde_type geometric_sde --time_eps 0. --sigma2_0 3e-5 --sigma2_min 3e-5 \
     --sigma2_max 0.999 --iw_sample_p drop_sigma2t_iw --iw_sample_q ll_iw --disjoint_training  --update_q_ema  \
     --cont_kl_anneal --num_process_per_node 8 --use_se --vae_checkpoint $EXPR_ID/vae/checkpoint.pt --dae_arch ncsnpp \
     --embedding_scale 1000 --mixing_logit_init -6 --warmup_epochs 20 --drop_inactive_var --skip_final_eval \
     --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

We re-train the SGM prior in the final stage using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vada.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm2 --dataset celeba_256 \
    --epochs 1500 --dropout 0.2 --num_channels_dae 320 --num_scales_dae 5 --weight_decay_norm_vae 1e-1 \
    --weight_decay_norm_dae 1e-2 --fir  --num_cell_per_scale_dae 8 --learning_rate_dae 6e-5 --learning_rate_min_dae 6e-5 \
    --batch_size 6 --sde_type vpsde --iw_sample_p drop_sigma2t_iw --num_process_per_node 8 \
    --use_se --vae_checkpoint $EXPR_ID/lsgm/checkpoint.pt  --dae_arch ncsnpp --embedding_scale 1000 \
    --mixing_logit_init -6 --warmup_epochs 20 --drop_inactive_var --skip_final_eval  \
    --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

For evaluating the final model, we used the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root -np 2 -npernode 1 bash -c \
    'python evaluate_vada.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/eval \
    --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm2/checkpoint_fid.pt --num_process_per_node 8 --eval_mode evaluate \
    --fid_ode_eval --ode_eps 1e-5 --ode_solver_tol 1e-5 --batch_size 64 --vae_train_mode \
    --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

Note in the commands above --num_process_per_node sets the number of available GPUs for training. Set this argument to different values depending on the available GPUs in your system.

Evaluating NVAE models

Additionally, if you'd like to evaluate an NVAE trained in the first stage, you can use evaluate_vae.py using a command like:

python evaluate_vae.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/eval_vae --eval_mode evaluate \
        --checkpoint $CHECKPOINT_DIR/EXPR_ID/vae/checkpoint.pt --num_process_per_node 8 --fid_dir $FID_STATS_DIR \
        --fid_eval --nll_eval

However, please note that the NVAE models trained in the first stage with our commands are not always fully trained to convergence, as the KL warmup is often performed only partially during first stage training (and completed during the second end-to-end LSGM training stage) and the number of epochs is set to a small value. If you would like to fully train an NVAE model in the first stage use --kl_anneal_portion 0.3 --kl_max_coeff 1.0, and set the number of epochs such that you have about 100k to 400k training iterations.

Monitoring the training progress

We use Tensorboard to monitor the progress of training using a command like:

tensorboard --logdir $CHECKPOINT_DIR/$EXPR_ID/lsgm

Checkpoints

We provide pre-trained LSGM checkpoints for the MNIST, CIFAR-10, and CelebA-HQ-256 datasets at this location. In addition to LSGM models, each directory also contains the pre-trained NVAE checkpoint obtained at the end of the first VAE pre-training stage.

Common issues

Getting NaN in training

One of the main challenges in training very deep hierarchical VAEs are training instabilities that we discussed in the NVAE paper. The training commands provided above train LSGM models similar to the ones reported in the paper. However, if you encounter NaN during training, you can use these tricks to stabilize your training: (i) Increase the spectral regularization coefficients --weight_decay_norm_vae and --weight_decay_norm_dae. (ii) Decrease the learning rate. (iii) Disable training of the VAE component when training LSGM in the second stage by removing the --train_vae argument.

Note that some of our commands above have the --custom_conv_dae flag. This flag tells our spectral regularization (SR) class to look for particular convolution layer classes when applying this regularization on the SGM prior. Since these classes are not present in the NCSN++ architecture, this flag will disable SR on the conv layers of the SGM prior. In our experiments, we accidentally observed that providing this flag (i.e., disabling SR on the SGM prior), sometimes yields better generative performance due to the over-regularization of SR. However, this can come with instabilities at times. If you observe instability while having the --custom_conv_dae flag, we recommend removing this flag such that SR can be applied to the conv layers in the SGM prior as well.

Requirements installation

Installing ninja, pytorch and apex (optional) often requires installing a variant of these libraries that are compiled with the same cuda version. We installed these libraries on a Ubuntu system with python 3.8 and CUDA 10.1 using the following commands:

export CUDA_HOME=/usr/local/cuda-10.1/
pip3 install torch==1.8.0+cu101 torchvision==0.9.0+cu101 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip3 install ninja
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Alternatively, if you have difficulties with installing these libraries, we recommend running our code in docker containers. You can build a docker image on top of NVIDIA images in which these libraries are properly compiled. You can find our Dockerfile at scripts/Dockerfile.

License

Please check the LICENSE file. LSGM may be used with NVIDIA Processors non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Bibtex

Cite our paper using the following bibtex item:

@inproceedings{vahdat2021score,
  title={Score-based Generative Modeling in Latent Space},
  author={Vahdat, Arash and Kreis, Karsten and Kautz, Jan},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022