pytorch, hand(object) detect ,yolo v5,手检测

Related tags

Deep Learningyolo-v5
Overview

YOLO V5

物体检测,包括手部检测。

项目介绍

手部检测

手部检测示例如下 :

  • 视频示例:
    video

项目配置

  • 作者开发环境:
  • Python 3.7
  • PyTorch >= 1.5.1

数据集

手部检测数据集

该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进行制作。
TV-Hand 和 COCO-Hand数据集官网地址 http://vision.cs.stonybrook.edu/~supreeth/

感谢数据集贡献者。    
Paper:  
Contextual Attention for Hand Detection in the Wild. S. Narasimhaswamy, Z. Wei, Y. Wang, J. Zhang, and M. Hoai, IEEE International Conference on Computer Vision, ICCV 2019.   

所有数据集的数据格式

size是全图分辨率, (x,y) 是目标物体中心对于全图的归一化坐标,w,h是目标物体边界框对于全图的归一化宽、高。

dw = 1./(size[0])  
dh = 1./(size[1])  
x = (box[0] + box[1])/2.0 - 1  
y = (box[2] + box[3])/2.0 - 1  
w = box[1] - box[0]  
h = box[3] - box[2]  
x = x*dw  
w = w*dw  
y = y*dh  
h = h*dh  

为了更好了解标注数据格式,可以通过运行 show_yolo_anno.py 脚本进行制作数据集的格式。注意配置脚本里的path和path_voc_names,path为标注数据集的相关文件路径,path_voc_names为数据集配置文件。

制作自己的训练数据集

  • 如下所示,每一行代表一个物体实例,第一列是标签,后面是归一化的中心坐标(x,y),和归一化的宽(w)和高(h),且每一列信息空格间隔。归一化公式如上,同时可以通过show_yolo_anno.py进行参数适配后,可视化验证其正确性。
label     x                  y                   w                  h
0 0.6200393316313977 0.5939000244140625 0.17241466452130497 0.14608001708984375
0 0.38552491996544863 0.5855700073242187 0.14937006832733554 0.1258599853515625
0 0.32889763138738515 0.701989990234375 0.031338589085055775 0.0671400146484375
0 0.760577424617577 0.69422998046875 0.028556443261975064 0.0548599853515625
0 0.5107086662232406 0.6921500244140625 0.018792660530470802 0.04682000732421875
0 0.9295538153861138 0.67602001953125 0.03884511231750328 0.01844000244140625

预训练模型

从零开始预训练模型

手部检测预训练模型

项目使用方法

数据集可视化

  • 根目录下运行命令: show_yolo_anno.py (注意脚本内相关参数配置 )

模型训练

  • 根目录下运行命令: python train.py (注意脚本内相关参数配置 )

模型推理

  • 根目录下运行命令: python video.py (注意脚本内相关参数配置 )
Owner
Eric.Lee
Eric.Lee
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023