DeLag: Detecting Latency Degradation Patterns in Service-based Systems

Overview

DeLag: Detecting Latency Degradation Patterns in Service-based Systems

Replication package of the work "DeLag: Detecting Latency Degradation Patterns in Service-based Systems".

Requirements

  • Python 3.6
  • Java 8
  • Apache Spark 2.3.1 (set $SPARK_HOME env variable with the folder path))
  • Elasticsearch for Spark 2.X 7.6.0 (set $ES_SPARK env variable with the jar path)
  • Maven 3.6.0 (only for datasets generation)
  • Docker 18.03 (only for datasets generation)

Use the following command to install Python dependencies

pip install --upgrade pip
pip install -r requirements.txt

The generation of datasets and the experimentation of techniques were performed on a dual Intel Xeon CPU E5-2650 v3 at 2.30GHz, totaling 40 cores and 80GB of RAM. We recommend to run the scripts of this replication package on a machine with similar specs.

Datasets

The datasets folder contains the datasets of traces used in the evaluation (in parquet format). Each row of each dataset represents a request and contains:

  • traceId: the ID of the request:
  • [requestLatency]: the overall latency of the request. It is represented by the column ts-travel-service_queryInfo in the Train-Ticket case study and by the column HomeControllerHome in the E-Shopper case study.
  • experiment: if equal to 0 (resp. 1) the request is affected by the ADC (resp. ) otherwise is not affected by any ADCs.
  • [RPC]: the cumulative execution time of [RPC] within the request.

Datasets generation

The datasets-generation folder contains the bash scripts used to generate the datasets used in the evaluation.

Techniques

The techniques folder contains the implementations of DeLag, CoTr, KrSa and DeCaf. In the following you can find the main Python classes used to implement each technique:

  • DeLag: class GeneticRangeAnalysis
  • CoTr: classes RangeAnalysis and GA
  • KrSa: classes RangeAnalysis and BranchAndBound
  • DeCaf: class DeCaf.

Experiments

The experiments folder contains the Python scripts used to execute DeLag and baselines techniques on the generated datasets.

Results

The results folder contains the results of our experimentation. Each row of each csv file represents a run of a particural technique on a dataset and contains:

  • exp: the dataset ID.
  • algo: the technique experimented. The notation used to indicate each techique is described below:
    • gra: DeLag - DeLag: Detecting Latency Degradation Patterns in Service-based Systems
    • bnb: KrSa - Understanding Latency Variations of Black Box Services (WWW 2013)
    • ga: CoTr - Detecting Latency Degradation Patterns in Service-based Systems (ICPE 2020)
    • decaf DeCaf - DeCaf: Diagnosing and Triaging Performance Issues in Large-Scale Cloud Services (ICSE 2020)
    • kmeans: K-means
    • hierarchical: HC - Hierachical clustering
  • trial: the ID of the run (techniques may be repeated multiple times on a dataset to mitigate result variabilility)
  • precision: effectiveness measure - Precision ()
  • recall: effectiveness measure - Recall ()
  • fmeasure: effectiveness measure - F1-score ()
  • time: execution time in seconds

Scripts

The scripts folder contains the Python scripts used to generate the figures and tables of the paper.

Systems

The systems folder contains the two case study systems.

You might also like...
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

A DeepStack custom model for detecting common objects in dark/night images and videos.
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

A custom DeepStack model for detecting 16 human actions.
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Python TFLite scripts for detecting objects of any class in an image without knowing their label.
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

Releases(v1.1)
  • v1.1(Dec 22, 2022)

    Replication package of the work "DeLag: Using Multi-Objective Optimization to Enhance the Detection of Latency Degradation Patterns in Service-based Systems"

    Source code(tar.gz)
    Source code(zip)
Owner
SEALABQualityGroup @ University of L'Aquila
SEALABQualityGroup @ University of L'Aquila
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022