Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Overview

Deep Unsupervised Image Hashing by Maximizing Bit Entropy

This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Proposed Bi-half layer

A simple, parameter-free, bi-half coding layer to maximize hash channel capacity

Datasets and Architectures on different settings

Experiments on 5 image datasets: Flickr25k, Nus-wide, Cifar-10, Mscoco, Mnist, and 2 video datasets: Ucf-101 and Hmdb-51. According to different settings, we divided them into: i) Train an AutoEncoder on Mnist; ii) Image Hashing on Flickr25k, Nus-wide, Cifar-10, Mscoco using Pre-trained Vgg; iii) Video Hashing on Ucf-101 and Hmdb-51 using Pre-trained 3D models.

Glance

3 settings ── AutoEncoder ── ── ── ── ImageHashing ── ── ── ── VideoHashing      
               ├── Sign.py             ├── Cifar10_I.py          └── main.py
               ├── SignReg.py          ├── Cifar10_II.py
               └── BiHalf.py           ├── Flickr25k.py
    	     			       └── Mscoco.py

Datasets download

# Datasets Download
1 Flick25k Link
2 Mscoco Link
3 Nuswide Link
4 Cifar10 Link
5 Mnist Link
6 Ucf101 Link
7 Hmdb51 Link

For video datasets, we converted them from avi to jpg files. The original avi videos can be download: Ucf101 and Hmdb51.

Implementation Details for Video Setup

For the video datasets ucf101 and hmdb51, to generate a training sample, we first select a video frame by uniform sampling, and then generate a 16-frame clip around the frame. If the selected position has less than 16 frames before the video ends, then we repeat the procedure until it fits. We spatially resize the cropped sample to 112 x 112 pixels, resulting in one training sample with size of 3 channels x 16 frames x 112 pixels x 112 pixels. In the retrieval, we adopt sliding window to generate clips as input, i.e, each video is split into non-overlapping 16-frame clips. Each video has an average 92 non-overlapped clips. Take the ucf101 for example, we obtain a query set of 3,783 videos containing 348,047 non-overlapped clips, and the retrieval set of 9,537 videos containing 891,961 clips. We then input the non-overlapped clips to extract binary descriptors for hashing. For more details, please see the paper.

Pretrained model

You can download kinetics pre-trained 3D models: ResNet-34 and ResNet-101 here.


3D Visualization

The continuous feature visualization on an AutoEncoder using Mnist. We compare 3 different models: sign layer, sign+reg and our bi-half layer.

Sign Layer Sign + Reg Bi-half Layer

Citation

If you find the code in this repository useful for your research consider citing it.

@article{liAAAI2021,
  title={Deep Unsupervised Image Hashing by Maximizing Bit Entropy},
  author={Li, Yunqiang and van Gemert, Jan},
  journal={AAAI},
  year={2021}
}

Contact

If you have any problem about our code, feel free to contact

This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022