This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Overview

Wizard of Search Engine: Access to Information Through Conversations with Search Engines

by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zhumin Chen, Zhaochun Ren and Maarten de Rijke

@inproceedings{ren2021wizard,
title={Wizard of Search Engine: Access to Information Through Conversations with Search Engines},
author={Ren, Pengjie and Liu, Zhongkun and Song, Xiaomeng and Tian, Hongtao and Chen, Zhumin and Ren, Zhaochun and de Rijke, Maarten},
booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
year={2021}
}

Paper summary

task
Task pipeline for conversational information seeking (CIS)
model
Model pipeline for conversational information seeking (CIS)

In this work, we make efforts to facilitate research on conversational information seeking (CIS) from three angles: (1) We formulate a pipeline for CIS with six sub-tasks: intent detection, keyphrase extraction, action prediction, query selection, passage selection, and response generation. (2) We release a benchmark dataset, called wizard of search engine(WISE), which allows for comprehensive and in-depth research on all aspects of CIS. (3) We design a neural architecture capable of training and evaluating both jointly and separately on the six sub-tasks, and devise a pre-train/fine-tune learning scheme, that can reduce the requirements of WISE in scale by making full use of available data.

Running experiments

Requirements

This code is written in PyTorch. Any version later than 1.6 is expected to work with the provided code. Please refer to the official website for an installation guide.

We recommend to use conda for installing the requirements. If you haven't installed conda yet, you can find instructions here. The steps for installing the requirements are:

  • Create a new environment

    conda create env -n WISE
    

    In the environment, a python version >3.6 should be used.

  • Activate the environment

    conda activate WISE
    
  • Install the requirements within the environment via pip:

    pip install -r requirements.txt
    

Datasets

We use WebQA, DuReader, KdConv and DuConv datasets for pretraining. You can get them from the provided links and put them in the corresponding folders in ./data/. For example, WebQA datasets should be put in ./data/WebQA, and DuReader datasets in ./data/Dureader and so on. We use the WISE dataset to fine-tune the model, and this dataset is available in ./data/WISE. Details about the WISE dataset can be found here.

Training

  • Run the following scripts to automatically process the pretraining datasets into the required format:
python ./Run.py --mode='data'
  • Run the following scripts sequentially:
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='pretrain'
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='finetune'

Note that you should select the appropriate pretrain models from the folder ./output/pretrained, and put them into ./output/pretrained_ready which is newly created by yourself before finetuning. The hyperparameters are set to the default values used in our experiments. To see an overview of all hyperparameters, please refer to ./Run.py.

Evaluating

  • Run the following scripts:
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='infer-valid'
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='eval-valid'
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='infer-test'
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='eval-test'
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
190 Jan 03, 2023
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022