Face uncertainty quantification or estimation using PyTorch.

Overview

Face-uncertainty-pytorch

This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is affected by the ability of the recognition model (model uncertainty) and the quality of the input image (data uncertainty).

Model Uncertainty:

  • MC-Dropout

Data Uncertainty:

Usage

Preprocessing

Download the MS-Celeb-1M dataset from 1 or 2:

  1. insightface, https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
  2. face.evoLVe.PyTorch, https://github.com/ZhaoJ9014/face.evoLVe.PyTorch#Data-Zoo)

Decode it using the code: https://github.com/deepinsight/insightface/blob/master/recognition/common/rec2image.py

Training

  1. Download the base model from https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch

  2. Modify the configuration files under config/ folder.

  3. Start the training:

    python network.py --config_file config/config_ir50_idq_loss_glint360k.py
    Start Training
    name: glint_ir50_idq
    num_epochs: 12
    epoch_size: 1000
    batch_size: 80
    num_c_in_batch 10 num_img_each_c 8.0
    IDQ_loss soft 16 0.45
    2022-01-12 23:37:48 [0-100] | loss 0.535 lr0.01 cos 0.55 1.00 0.18 pconf 0.77 1.00 0.15 t_soft 0.69 1.00 0.01 uloss 0.535 mem 3.1 G
    2022-01-12 23:38:12 [0-200] | loss 0.464 lr0.01 cos 0.58 0.93 0.08 pconf 0.75 1.00 0.05 t_soft 0.76 1.00 0.00 uloss 0.464 mem 3.1 G
    2022-01-12 23:38:37 [0-300] | loss 0.533 lr0.01 cos 0.52 1.00 0.04 pconf 0.78 0.99 0.25 t_soft 0.63 1.00 0.00 uloss 0.533 mem 3.1 G
    2022-01-12 23:39:02 [0-400] | loss 0.511 lr0.01 cos 0.52 0.99 0.09 pconf 0.77 0.99 0.16 t_soft 0.61 1.00 0.00 uloss 0.511 mem 3.1 G
    2022-01-12 23:39:27 [0-500] | loss 0.554 lr0.01 cos 0.48 0.97 0.05 pconf 0.77 0.99 0.18 t_soft 0.56 1.00 0.00 uloss 0.554 mem 3.1 G
    2022-01-12 23:39:52 [0-600] | loss 0.462 lr0.01 cos 0.55 0.95 0.19 pconf 0.78 0.99 0.23 t_soft 0.70 1.00 0.01 uloss 0.462 mem 3.1 G
    2022-01-12 23:40:17 [0-700] | loss 0.408 lr0.01 cos 0.55 0.96 0.07 pconf 0.78 0.99 0.07 t_soft 0.70 1.00 0.00 uloss 0.408 mem 3.1 G
    2022-01-12 23:40:42 [0-800] | loss 0.532 lr0.01 cos 0.51 0.99 0.03 pconf 0.80 0.99 0.25 t_soft 0.63 1.00 0.00 uloss 0.532 mem 3.1 G
    2022-01-12 23:41:06 [0-900] | loss 0.563 lr0.01 cos 0.54 1.00 0.03 pconf 0.80 0.99 0.13 t_soft 0.66 1.00 0.00 uloss 0.563 mem 3.1 G
    2022-01-12 23:41:27 [0-1000] | loss 0.570 lr0.01 cos 0.50 0.86 0.11 pconf 0.78 0.99 0.16 t_soft 0.61 1.00 0.00 uloss 0.570 mem 3.1 G
    ---cfp_fp
    sigma_sq [0.00263163 0.01750576 0.04416942 0.10698225 0.23958328 0.46090251
     0.92462665] percentile [0, 10, 30, 50, 70, 90, 100]
    reject_factor 0.0000 risk_threshold 0.924627 keep_idxes 7000 / 7000 Cosine score eer 0.012571 fmr100 0.012571 fmr1000 0.018286
    reject_factor 0.0500 risk_threshold 0.650710 keep_idxes 6655 / 7000 Cosine score eer 0.004357 fmr100 0.003900 fmr1000 0.006601
    reject_factor 0.1000 risk_threshold 0.556291 keep_idxes 6300 / 7000 Cosine score eer 0.003968 fmr100 0.003791 fmr1000 0.006003
    reject_factor 0.1500 risk_threshold 0.509630 keep_idxes 5951 / 7000 Cosine score eer 0.003864 fmr100 0.004013 fmr1000 0.005351
    reject_factor 0.2000 risk_threshold 0.459032 keep_idxes 5600 / 7000 Cosine score eer 0.003392 fmr100 0.003540 fmr1000 0.004248
    reject_factor 0.2500 risk_threshold 0.421400 keep_idxes 5251 / 7000 Cosine score eer 0.003236 fmr100 0.003407 fmr1000 0.003785
    reject_factor 0.3000 risk_threshold 0.389943 keep_idxes 4903 / 7000 Cosine score eer 0.002651 fmr100 0.002436 fmr1000 0.002842
    reject_factor mean --------------------------------------------- Cosine score fmr1000 0.002684
    AUERC: 0.0026
    AUERC30: 0.0017
    AUC: 0.0024
    AUC30: 0.0015
    

Testing

We use lfw.bin, cfp_fp.bin, etc. from ms1m-retinaface-t1 as the test dataset.

python evaluation/verification_risk_fnmr.py

MC-Dropout

python mc_dropout/verification_risk_mcdropout_fnmr.py
Owner
Kaen
Kaen
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022