Face uncertainty quantification or estimation using PyTorch.

Overview

Face-uncertainty-pytorch

This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is affected by the ability of the recognition model (model uncertainty) and the quality of the input image (data uncertainty).

Model Uncertainty:

  • MC-Dropout

Data Uncertainty:

Usage

Preprocessing

Download the MS-Celeb-1M dataset from 1 or 2:

  1. insightface, https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
  2. face.evoLVe.PyTorch, https://github.com/ZhaoJ9014/face.evoLVe.PyTorch#Data-Zoo)

Decode it using the code: https://github.com/deepinsight/insightface/blob/master/recognition/common/rec2image.py

Training

  1. Download the base model from https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch

  2. Modify the configuration files under config/ folder.

  3. Start the training:

    python network.py --config_file config/config_ir50_idq_loss_glint360k.py
    Start Training
    name: glint_ir50_idq
    num_epochs: 12
    epoch_size: 1000
    batch_size: 80
    num_c_in_batch 10 num_img_each_c 8.0
    IDQ_loss soft 16 0.45
    2022-01-12 23:37:48 [0-100] | loss 0.535 lr0.01 cos 0.55 1.00 0.18 pconf 0.77 1.00 0.15 t_soft 0.69 1.00 0.01 uloss 0.535 mem 3.1 G
    2022-01-12 23:38:12 [0-200] | loss 0.464 lr0.01 cos 0.58 0.93 0.08 pconf 0.75 1.00 0.05 t_soft 0.76 1.00 0.00 uloss 0.464 mem 3.1 G
    2022-01-12 23:38:37 [0-300] | loss 0.533 lr0.01 cos 0.52 1.00 0.04 pconf 0.78 0.99 0.25 t_soft 0.63 1.00 0.00 uloss 0.533 mem 3.1 G
    2022-01-12 23:39:02 [0-400] | loss 0.511 lr0.01 cos 0.52 0.99 0.09 pconf 0.77 0.99 0.16 t_soft 0.61 1.00 0.00 uloss 0.511 mem 3.1 G
    2022-01-12 23:39:27 [0-500] | loss 0.554 lr0.01 cos 0.48 0.97 0.05 pconf 0.77 0.99 0.18 t_soft 0.56 1.00 0.00 uloss 0.554 mem 3.1 G
    2022-01-12 23:39:52 [0-600] | loss 0.462 lr0.01 cos 0.55 0.95 0.19 pconf 0.78 0.99 0.23 t_soft 0.70 1.00 0.01 uloss 0.462 mem 3.1 G
    2022-01-12 23:40:17 [0-700] | loss 0.408 lr0.01 cos 0.55 0.96 0.07 pconf 0.78 0.99 0.07 t_soft 0.70 1.00 0.00 uloss 0.408 mem 3.1 G
    2022-01-12 23:40:42 [0-800] | loss 0.532 lr0.01 cos 0.51 0.99 0.03 pconf 0.80 0.99 0.25 t_soft 0.63 1.00 0.00 uloss 0.532 mem 3.1 G
    2022-01-12 23:41:06 [0-900] | loss 0.563 lr0.01 cos 0.54 1.00 0.03 pconf 0.80 0.99 0.13 t_soft 0.66 1.00 0.00 uloss 0.563 mem 3.1 G
    2022-01-12 23:41:27 [0-1000] | loss 0.570 lr0.01 cos 0.50 0.86 0.11 pconf 0.78 0.99 0.16 t_soft 0.61 1.00 0.00 uloss 0.570 mem 3.1 G
    ---cfp_fp
    sigma_sq [0.00263163 0.01750576 0.04416942 0.10698225 0.23958328 0.46090251
     0.92462665] percentile [0, 10, 30, 50, 70, 90, 100]
    reject_factor 0.0000 risk_threshold 0.924627 keep_idxes 7000 / 7000 Cosine score eer 0.012571 fmr100 0.012571 fmr1000 0.018286
    reject_factor 0.0500 risk_threshold 0.650710 keep_idxes 6655 / 7000 Cosine score eer 0.004357 fmr100 0.003900 fmr1000 0.006601
    reject_factor 0.1000 risk_threshold 0.556291 keep_idxes 6300 / 7000 Cosine score eer 0.003968 fmr100 0.003791 fmr1000 0.006003
    reject_factor 0.1500 risk_threshold 0.509630 keep_idxes 5951 / 7000 Cosine score eer 0.003864 fmr100 0.004013 fmr1000 0.005351
    reject_factor 0.2000 risk_threshold 0.459032 keep_idxes 5600 / 7000 Cosine score eer 0.003392 fmr100 0.003540 fmr1000 0.004248
    reject_factor 0.2500 risk_threshold 0.421400 keep_idxes 5251 / 7000 Cosine score eer 0.003236 fmr100 0.003407 fmr1000 0.003785
    reject_factor 0.3000 risk_threshold 0.389943 keep_idxes 4903 / 7000 Cosine score eer 0.002651 fmr100 0.002436 fmr1000 0.002842
    reject_factor mean --------------------------------------------- Cosine score fmr1000 0.002684
    AUERC: 0.0026
    AUERC30: 0.0017
    AUC: 0.0024
    AUC30: 0.0015
    

Testing

We use lfw.bin, cfp_fp.bin, etc. from ms1m-retinaface-t1 as the test dataset.

python evaluation/verification_risk_fnmr.py

MC-Dropout

python mc_dropout/verification_risk_mcdropout_fnmr.py
Owner
Kaen
Kaen
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023