Face uncertainty quantification or estimation using PyTorch.

Overview

Face-uncertainty-pytorch

This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is affected by the ability of the recognition model (model uncertainty) and the quality of the input image (data uncertainty).

Model Uncertainty:

  • MC-Dropout

Data Uncertainty:

Usage

Preprocessing

Download the MS-Celeb-1M dataset from 1 or 2:

  1. insightface, https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
  2. face.evoLVe.PyTorch, https://github.com/ZhaoJ9014/face.evoLVe.PyTorch#Data-Zoo)

Decode it using the code: https://github.com/deepinsight/insightface/blob/master/recognition/common/rec2image.py

Training

  1. Download the base model from https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch

  2. Modify the configuration files under config/ folder.

  3. Start the training:

    python network.py --config_file config/config_ir50_idq_loss_glint360k.py
    Start Training
    name: glint_ir50_idq
    num_epochs: 12
    epoch_size: 1000
    batch_size: 80
    num_c_in_batch 10 num_img_each_c 8.0
    IDQ_loss soft 16 0.45
    2022-01-12 23:37:48 [0-100] | loss 0.535 lr0.01 cos 0.55 1.00 0.18 pconf 0.77 1.00 0.15 t_soft 0.69 1.00 0.01 uloss 0.535 mem 3.1 G
    2022-01-12 23:38:12 [0-200] | loss 0.464 lr0.01 cos 0.58 0.93 0.08 pconf 0.75 1.00 0.05 t_soft 0.76 1.00 0.00 uloss 0.464 mem 3.1 G
    2022-01-12 23:38:37 [0-300] | loss 0.533 lr0.01 cos 0.52 1.00 0.04 pconf 0.78 0.99 0.25 t_soft 0.63 1.00 0.00 uloss 0.533 mem 3.1 G
    2022-01-12 23:39:02 [0-400] | loss 0.511 lr0.01 cos 0.52 0.99 0.09 pconf 0.77 0.99 0.16 t_soft 0.61 1.00 0.00 uloss 0.511 mem 3.1 G
    2022-01-12 23:39:27 [0-500] | loss 0.554 lr0.01 cos 0.48 0.97 0.05 pconf 0.77 0.99 0.18 t_soft 0.56 1.00 0.00 uloss 0.554 mem 3.1 G
    2022-01-12 23:39:52 [0-600] | loss 0.462 lr0.01 cos 0.55 0.95 0.19 pconf 0.78 0.99 0.23 t_soft 0.70 1.00 0.01 uloss 0.462 mem 3.1 G
    2022-01-12 23:40:17 [0-700] | loss 0.408 lr0.01 cos 0.55 0.96 0.07 pconf 0.78 0.99 0.07 t_soft 0.70 1.00 0.00 uloss 0.408 mem 3.1 G
    2022-01-12 23:40:42 [0-800] | loss 0.532 lr0.01 cos 0.51 0.99 0.03 pconf 0.80 0.99 0.25 t_soft 0.63 1.00 0.00 uloss 0.532 mem 3.1 G
    2022-01-12 23:41:06 [0-900] | loss 0.563 lr0.01 cos 0.54 1.00 0.03 pconf 0.80 0.99 0.13 t_soft 0.66 1.00 0.00 uloss 0.563 mem 3.1 G
    2022-01-12 23:41:27 [0-1000] | loss 0.570 lr0.01 cos 0.50 0.86 0.11 pconf 0.78 0.99 0.16 t_soft 0.61 1.00 0.00 uloss 0.570 mem 3.1 G
    ---cfp_fp
    sigma_sq [0.00263163 0.01750576 0.04416942 0.10698225 0.23958328 0.46090251
     0.92462665] percentile [0, 10, 30, 50, 70, 90, 100]
    reject_factor 0.0000 risk_threshold 0.924627 keep_idxes 7000 / 7000 Cosine score eer 0.012571 fmr100 0.012571 fmr1000 0.018286
    reject_factor 0.0500 risk_threshold 0.650710 keep_idxes 6655 / 7000 Cosine score eer 0.004357 fmr100 0.003900 fmr1000 0.006601
    reject_factor 0.1000 risk_threshold 0.556291 keep_idxes 6300 / 7000 Cosine score eer 0.003968 fmr100 0.003791 fmr1000 0.006003
    reject_factor 0.1500 risk_threshold 0.509630 keep_idxes 5951 / 7000 Cosine score eer 0.003864 fmr100 0.004013 fmr1000 0.005351
    reject_factor 0.2000 risk_threshold 0.459032 keep_idxes 5600 / 7000 Cosine score eer 0.003392 fmr100 0.003540 fmr1000 0.004248
    reject_factor 0.2500 risk_threshold 0.421400 keep_idxes 5251 / 7000 Cosine score eer 0.003236 fmr100 0.003407 fmr1000 0.003785
    reject_factor 0.3000 risk_threshold 0.389943 keep_idxes 4903 / 7000 Cosine score eer 0.002651 fmr100 0.002436 fmr1000 0.002842
    reject_factor mean --------------------------------------------- Cosine score fmr1000 0.002684
    AUERC: 0.0026
    AUERC30: 0.0017
    AUC: 0.0024
    AUC30: 0.0015
    

Testing

We use lfw.bin, cfp_fp.bin, etc. from ms1m-retinaface-t1 as the test dataset.

python evaluation/verification_risk_fnmr.py

MC-Dropout

python mc_dropout/verification_risk_mcdropout_fnmr.py
Owner
Kaen
Kaen
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022