Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Overview

Cross Domain Facial Expression Recognition Benchmark

Implementation of papers:

Pipeline

Environment

Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3

Note: We also provide docker image for this project, click here. (Tag: py3-pytorch1.3-agra)

Datasets

To apply for the AFE, please complete the AFE Database User Agreement and submit it to [email protected] or [email protected].

Note:

  1. The AFE Database Agreement needs to be signed by the faculty member at a university or college and sent it by email.
  2. In order to comply with relevant regulations, you need to apply for the image data of the following data sets by yourself, including CK+, JAFFE, SFEW 2.0, FER2013, ExpW, RAF.

Pre-Train Model

You can download pre-train models in Baidu Drive (password: tzrf) and OneDrive.

Note: To replace backbone of each methods, you should modify and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py) in the folder where you want to use the method.

Usage

Before run these script files, you should download datasets and pre-train model, and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py).

Run ICID

cd ICID
bash Train.sh

Run DFA

cd DFA
bash Train.sh

Run LPL

cd LPL
bash Train.sh

Run DETN

cd DETN
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run FTDNN

cd FTDNN
bash Train.sh

Run ECAN

cd ECAN
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run CADA

cd CADA
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run SAFN

cd SAFN
bash TrainWithSAFN.sh

Run SWD

cd SWD
bash Train.sh

Run AGRA

cd AGRA
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Result

Souce Domain: RAF

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-50 74.42 50.70 48.85 53.70 69.54 59.44
DFA ResNet-50 64.26 44.44 43.07 45.79 56.86 50.88
LPL ResNet-50 74.42 53.05 48.85 55.89 66.90 59.82
DETN ResNet-50 78.22 55.89 49.40 52.29 47.58 56.68
FTDNN ResNet-50 79.07 52.11 47.48 55.98 67.72 60.47
ECAN ResNet-50 79.77 57.28 52.29 56.46 47.37 58.63
CADA ResNet-50 72.09 52.11 53.44 57.61 63.15 59.68
SAFN ResNet-50 75.97 61.03 52.98 55.64 64.91 62.11
SWD ResNet-50 75.19 54.93 52.06 55.84 68.35 61.27
Ours ResNet-50 85.27 61.50 56.43 58.95 68.50 66.13

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-18 67.44 48.83 47.02 53.00 68.52 56.96
DFA ResNet-18 54.26 42.25 38.30 47.88 47.42 46.02
LPL ResNet-18 72.87 53.99 49.31 53.61 68.35 59.63
DETN ResNet-18 64.19 52.11 42.25 42.01 43.92 48.90
FTDNN ResNet-18 76.74 50.23 49.54 53.28 68.08 59.57
ECAN ResNet-18 66.51 52.11 48.21 50.76 48.73 53.26
CADA ResNet-18 73.64 55.40 52.29 54.71 63.74 59.96
SAFN ResNet-18 68.99 49.30 50.46 53.31 68.32 58.08
SWD ResNet-18 72.09 53.52 49.31 53.70 65.85 58.89
Ours ResNet-18 77.52 61.03 52.75 54.94 69.70 63.19

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID MobileNet V2 57.36 37.56 38.30 44.47 60.64 47.67
DFA MobileNet V2 41.86 35.21 29.36 42.36 43.66 38.49
LPL MobileNet V2 59.69 40.38 40.14 50.13 62.26 50.52
DETN MobileNet V2 53.49 40.38 35.09 45.88 45.26 44.02
FTDNN MobileNet V2 71.32 46.01 45.41 49.96 62.87 55.11
ECAN MobileNet V2 53.49 43.08 35.09 45.77 45.09 44.50
CADA MobileNet V2 62.79 53.05 43.12 49.34 59.40 53.54
SAFN MobileNet V2 66.67 45.07 40.14 49.90 61.40 52.64
SWD MobileNet V2 68.22 55.40 43.58 50.30 60.04 55.51
Ours MobileNet V2 72.87 55.40 45.64 51.05 63.94 57.78

Souce Domain: AFE

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-50 56.59 57.28 44.27 46.92 52.91 51.59
DFA ResNet-50 51.86 52.70 38.03 41.93 60.12 48.93
LPL ResNet-50 73.64 61.03 49.77 49.54 55.26 57.85
DETN ResNet-50 56.27 52.11 44.72 42.17 59.80 51.01
FTDNN ResNet-50 61.24 57.75 47.25 46.36 52.89 53.10
ECAN ResNet-50 58.14 56.91 46.33 46.30 61.44 53.82
CADA ResNet-50 72.09 49.77 50.92 50.32 61.70 56.96
SAFN ResNet-50 73.64 64.79 49.08 48.89 55.69 58.42
SWD ResNet-50 72.09 61.50 48.85 48.83 56.22 57.50
Ours ResNet-50 78.57 65.43 51.18 51.31 62.71 61.84

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-18 54.26 51.17 47.48 46.44 54.85 50.84
DFA ResNet-18 35.66 45.82 34.63 36.88 62.53 43.10
LPL ResNet-18 67.44 62.91 48.39 49.82 54.51 56.61
DETN ResNet-18 44.19 47.23 45.46 45.39 58.41 48.14
FTDNN ResNet-18 58.91 59.15 47.02 48.58 55.29 53.79
ECAN ResNet-18 44.19 60.56 43.26 46.15 62.52 51.34
CADA ResNet-18 72.09 53.99 48.39 48.61 58.50 56.32
SAFN ResNet-18 68.22 61.50 50.46 50.07 55.17 57.08
SWD ResNet-18 77.52 59.15 50.69 51.84 56.56 59.15
Ours ResNet-18 79.84 61.03 51.15 51.95 65.03 61.80

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID MobileNet V2 55.04 42.72 34.86 39.94 44.34 43.38
DFA MobileNet V2 44.19 27.70 31.88 35.95 61.55 40.25
LPL MobileNet V2 69.77 50.23 43.35 45.57 51.63 52.11
DETN MobileNet V2 57.36 54.46 32.80 44.11 64.36 50.62
FTDNN MobileNet V2 65.12 46.01 46.10 46.69 53.02 51.39
ECAN MobileNet V2 71.32 56.40 37.61 45.34 64.00 54.93
CADA MobileNet V2 70.54 45.07 40.14 46.72 54.93 51.48
SAFN MobileNet V2 62.79 53.99 42.66 46.61 52.65 51.74
SWD MobileNet V2 64.34 53.52 44.72 50.24 55.85 53.73
Ours MobileNet V2 75.19 54.46 47.25 47.88 61.10 57.18

Mean of All Methods

Souce Domain: RAF

Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ResNet-50 75.87 54.30 54.49 54.82 62.09 59.51
ResNet-18 69.43 51.88 47.94 51.72 61.26 56.45
MobileNet V2 60.78 45.15 39.59 47.92 56.46 49.98

Souce Domain: AFE

Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ResNet-50 65.41 57.93 47.04 47.26 57.87 55.10
ResNet-18 60.23 56.25 46.95 47.57 58.34 53.87
MobileNet V2 63.57 48.46 40.14 44.91 56.34 50.68

Citation

@article{chen2020cross,
  title={Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning},
  author={Chen, Tianshui and Pu, Tao and Wu, Hefeng and Xie, Yuan and Liu, Lingbo and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3131222}
}

@inproceedings{xie2020adversarial,
  title={Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition},
  author={Xie, Yuan and Chen, Tianshui and Pu, Tao and Wu, Hefeng and Lin, Liang},
  booktitle={Proceedings of the 28th ACM international conference on Multimedia},
  year={2020}
}

Contributors

For any questions, feel free to open an issue or contact us:

This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022