The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Related tags

Deep Learningeirli
Overview

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Documentation status Dataset download link

Over the past handful of years, representation learning has exploded as a subfield, and, with it have come a plethora of new methods, each slightly different from the other.

Our Empirical Investigation of Representation Learning for Imitation (EIRLI) has two main goals:

  1. To create a modular algorithm definition system that allows researchers to easily pick and choose from a wide array of commonly used design axes
  2. To facilitate testing of representations within the context of sequential learning, particularly imitation learning and offline reinforcement learning

Common Use Cases

Do you want to…

  • Reproduce our results? You can find scripts and instructions here to help reproduce our benchmark results.
  • Design and experiment with a new representation learning algorithm using our modular components? You can find documentation on that here
  • Use our algorithm definitions in a setting other than sequential learning? The base example here demonstrates this simplified use case

Otherwise, you can see our full ReadTheDocs documentation here.

Modular Algorithm Design

This library was designed in a way that breaks down the definition of a representation learning algorithm into several key parts. The intention was that this system be flexible enough many commonly used algorithms can be defined through different combinations of these modular components.

The design relies on the central concept of a "context" and a "target". In very rough terms, all of our algorithms work by applying some transformation to the context, some transformation to the target, and then calculating a loss as a function of those two transformations. Sometimes an extra context object is passed in

Some examples are:

  • In SimCLR, the context and target are the same image frame, and augmentation and then encoding is applied to both context and target. That learned representation is sent through a decoder, and then the context and target representations are pulled together with a contrastive loss.
  • In TemporalCPC, the context is a frame at time t, and the target a frame at time t+k, and then, similarly to SimCLR above, augmentation is applied to the frame before it's put through an encoder, and the two resulting representations pulled together
  • In a Variational Autoencoder, the context and target are the same image frame. An bottleneck encoder and then a reconstructive decoder are applied to the context, and this reconstructed context is compared to the target through a L2 pixel loss
  • A Dynamics Prediction model can be seen as an conceptual combination of an autoencoder (which tries to predict the current full image frame) and TemporalCPC, which predicts future information based on current information. In the case of a Dynamics model, we predict a future frame (the target) given the current frame (context) and an action as extra context.

This abstraction isn't perfect, but we believe it is coherent enough to allow for a good number of shared mechanisms between algorithms, and flexible enough to support a wide variety of them.

The modular design mentioned above is facilitated through the use of a number of class interfaces, each of which handles a different component of the algorithm. By selecting different implementations of these shared interfaces, and creating a RepresentationLearner that takes them as arguments, and handles the base machinery of performing transformations.

A diagram showing how these components made up a training pipeline for our benchmark

  1. TargetPairConstructer - This component takes in a set of trajectories (assumed to be iterators of dicts containing 'obs' and optional 'acts', and 'dones' keys) and creates a dataset of (context, target, optional extra context) pairs that will be shuffled to form the training set.
  2. Augmenter - This component governs whether either or both of the context and target objects are augmented before being passed to the encoder. Note that this concept only meaningfully applies when the object being augmented is an image frame.
  3. Encoder - The encoder is responsible for taking in an image frame and producing a learned vector representation. It is optionally chained with a Decoder to produce the input to the loss function (which may be a reconstructed image in the case of VAE or Dynamics, or may be a projected version of the learned representation in the case of contrastive methods like SimCLR that use a projection head)
  4. Decoder - As mentioned above, the Decoder acts as a bridge between the representation in the form you want to use for transfer, and whatever input is required your loss function, which is often some transformation of that canonical representation.
  5. BatchExtender - This component is used for situations where you want to calculate loss on batch elements that are not part of the batch that went through your encoder and decoder on this step. This is centrally used for contrastive methods that use momentum, since in that case, you want to use elements from a cached store of previously-calculated representations as negatives in your contrastive loss
  6. LossCalculator - This component takes in the transformed context and transformed target and handles the loss calculation, along with any transformations that need to happen as a part of that calculation.

Training Scripts

In addition to machinery for constructing algorithms, the repo contains a set of Sacred-based training scripts for testing different Representation Learning algorithms as either pretraining or joint training components within an imitation learning pipeline. These are likeliest to be a fit for your use case if you want to reproduce our results, or train models in similar settings

Owner
Center for Human-Compatible AI
CHAI seeks to develop the conceptual and technical wherewithal to reorient the general thrust of AI research towards provably beneficial systems.
Center for Human-Compatible AI
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022