Wav2Vec for speech recognition, classification, and audio classification

Overview

Soxan

در زبان پارسی به نام سخن

This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your research. In the following, I'll show you how to train speech tasks in your dataset and how to use the pretrained models.

How to train

I'm just at the beginning of all the possible speech tasks. To start, we continue the training script with the speech emotion recognition problem.

Training - Notebook

Task Notebook
Speech Emotion Recognition (Wav2Vec 2.0) Open In Colab
Speech Emotion Recognition (Hubert) Open In Colab
Audio Classification (Wav2Vec 2.0) Open In Colab

Training - CMD

python3 run_wav2vec_clf.py \
    --pooling_mode="mean" \
    --model_name_or_path="lighteternal/wav2vec2-large-xlsr-53-greek" \
    --model_mode="wav2vec2" \ # or you can use hubert
    --output_dir=/path/to/output \
    --cache_dir=/path/to/cache/ \
    --train_file=/path/to/train.csv \
    --validation_file=/path/to/dev.csv \
    --test_file=/path/to/test.csv \
    --per_device_train_batch_size=4 \
    --per_device_eval_batch_size=4 \
    --gradient_accumulation_steps=2 \
    --learning_rate=1e-4 \
    --num_train_epochs=5.0 \
    --evaluation_strategy="steps"\
    --save_steps=100 \
    --eval_steps=100 \
    --logging_steps=100 \
    --save_total_limit=2 \
    --do_eval \
    --do_train \
    --fp16 \
    --freeze_feature_extractor

Prediction

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification

model_name_or_path = "path/to/your-pretrained-model"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate

# for wav2vec
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)

# for hubert
model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device)


def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech


def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}

    with torch.no_grad():
        logits = model(**inputs).logits

    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in
               enumerate(scores)]
    return outputs


path = "/path/to/disgust.wav"
outputs = predict(path, sampling_rate)    

Output:

[
    {'Emotion': 'anger', 'Score': '0.0%'},
    {'Emotion': 'disgust', 'Score': '99.2%'},
    {'Emotion': 'fear', 'Score': '0.1%'},
    {'Emotion': 'happiness', 'Score': '0.3%'},
    {'Emotion': 'sadness', 'Score': '0.5%'}
]

Demos

Demo Link
Speech To Text With Emotion Recognition (Persian) - soon huggingface.co/spaces/m3hrdadfi/speech-text-emotion

Models

Dataset Model
ShEMO: a large-scale validated database for Persian speech emotion detection m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition
ShEMO: a large-scale validated database for Persian speech emotion detection m3hrdadfi/hubert-base-persian-speech-emotion-recognition
ShEMO: a large-scale validated database for Persian speech emotion detection m3hrdadfi/hubert-base-persian-speech-gender-recognition
Speech Emotion Recognition (Greek) (AESDD) m3hrdadfi/hubert-large-greek-speech-emotion-recognition
Speech Emotion Recognition (Greek) (AESDD) m3hrdadfi/hubert-base-greek-speech-emotion-recognition
Speech Emotion Recognition (Greek) (AESDD) m3hrdadfi/wav2vec2-xlsr-greek-speech-emotion-recognition
Eating Sound Collection m3hrdadfi/wav2vec2-base-100k-eating-sound-collection
GTZAN Dataset - Music Genre Classification m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres
Owner
Mehrdad Farahani
Researcher, NLP Engineer, Deep Learning Engineer φ
Mehrdad Farahani
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022