EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

Related tags

Deep LearningMADE
Overview

MADE (Multi-Adapter Dataset Experts)

This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the paper Single-dataset Experts for Multi-dataset Question Answering.

MADE combines a shared Transformer with a collection of adapters that are specialized to different reading comprehension datasets. See our paper for details.

Quick links

Requirements

The code uses Python 3.8, PyTorch, and the adapter-transformers library. Install the requirements with:

pip install -r requirements.txt

Download the data

You can download the datasets used in the paper from the repository for the MRQA 2019 shared task.

The datasets should be stored in directories ending with train or dev. For example, download the in-domain training datasets to a directory called data/train/ and download the in-domain development datasets to data/dev/.

For zero-shot and few-shot experiments, download the MRQA out-of-domain development datasets to a separate directory and split them into training and development splits using scripts/split_datasets.py. For example, download the datasets to data/transfer/ and run

ls data/transfer/* -1 | xargs -l python scripts/split_datasets.py

Use the default random seed (13) to replicate the splits used in the paper.

Download the trained models

The trained models are stored on the HuggingFace model hub at this URL: https://huggingface.co/princeton-nlp/MADE. All of the models are based on the RoBERTa-base model. They are:

To download just the MADE Transformer and adapters:

mkdir made_transformer
wget https://huggingface.co/princeton-nlp/MADE/resolve/main/made_transformer/model.pt -O made_transformer/model.pt

mkdir made_tuned_adapters
for d in SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions; do
  mkdir "made_tuned_adapters/${d}"
  wget "https://huggingface.co/princeton-nlp/MADE/resolve/main/made_tuned_adapters/${d}/model.pt" -O "made_tuned_adapters/${d}/model.pt"
done;

You can download all of the models at once by cloning the repository (first installing Git LFS):

git lfs install
git clone https://huggingface.co/princeton-nlp/MADE
mv MADE models

Run the model

The scripts in scripts/train/ and scripts/transfer/ provide examples of how to run the code. For more details, see the descriptions of the command line flags in run.py.

Train

You can use the scripts in scripts/train/ to train models on the MRQA datasets. For example, to train MADE:

./scripts/train/made_training.sh

And to tune the MADE adapters separately on individual datasets:

for d in SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions; do
  ./scripts/train/made_adapter_tuning.sh $d
done;

See run.py for details about the command line arguments.

Evaluate

A single fine-tuned model:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from multi_dataset_ft \
    --output_dir output/zero_shot/multi_dataset_ft

An individual MADE adapter (e.g. SQuAD):

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter \
    --adapter_name SQuAD \
    --output_dir output/zero_shot/made_tuned_adapters/SQuAD

An individual single-dataset adapter (e.g. SQuAD):

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_adapters_from single_dataset_adapters/ \
    --adapter \
    --adapter_name SQuAD \
    --output_dir output/zero_shot/single_dataset_adapters/SQuAD

An ensemble of MADE adapters. This will run a forward pass through every adapter in parallel.

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter_names SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions \
    --made \
    --parallel_adapters  \
    --output_dir output/zero_shot/made_ensemble

Averaging the parameters of the MADE adapters:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter_names SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions \
    --adapter \
    --average_adapters  \
    --output_dir output/zero_shot/made_avg

Running UnifiedQA:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --seq2seq \
    --model_name_or_path allenai/unifiedqa-t5-base \
    --output_dir output/zero_shot/unifiedqa

Transfer

The scripts in scripts/transfer/ provide examples of how to run the few-shot transfer learning experiments described in the paper. For example, the following command will repeat for three random seeds: (1) sample 64 training examples from BioASQ, (2) calculate the zero-shot loss of all the MADE adapters on the training examples, (3) average the adapter parameters in proportion to zero-shot loss, (4) hold out 32 training examples for validation data, (5) train the adapter until performance stops improving on the 32 validation examples, and (6) evaluate the adapter on the full development set.

python run.py \
    --train_on BioASQ \
    --adapter_names SQuAD HotpotQA TriviaQA NewsQA SearchQA NaturalQuestions \
    --made \
    --parallel_made \
    --weighted_average_before_training \
    --adapter_learning_rate 1e-5 \
    --steps 200 \
    --patience 10 \
    --eval_before_training \
    --full_eval_after_training \
    --max_train_examples 64 \
    --few_shot \
    --criterion "loss" \
    --negative_examples \
    --save \
    --seeds 7 19 29 \
    --load_from "made_transformer" \
    --load_adapters_from "made_tuned_adapters" \
    --name "transfer/made_preaverage/BioASQ/64"

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Dan Friedman ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@inproceedings{friedman2021single,
   title={Single-dataset Experts for Multi-dataset QA},
   author={Friedman, Dan and Dodge, Ben and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022