A self-supervised learning framework for audio-visual speech

Overview

AV-HuBERT (Audio-Visual Hidden Unit BERT)

Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction

Robust Self-Supervised Audio-Visual Speech Recognition

lip-reading

Introduction

AV-HuBERT is a self-supervised representation learning framework for audio-visual speech. It achieves state-of-the-art results in lip reading, ASR and audio-visual speech recognition on the LRS3 audio-visual speech benchmark.

If you find AV-HuBERT useful in your research, please use the following BibTeX entry for citation.

@inproceedings{shi2022avhubert,
    author  = {Bowen Shi and Wei-Ning Hsu and Kushal Lakhotia and Abdelrahman Mohamed},
    title = {Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction},
    year = {2022}
}

@article{shi2022avsr,
    author  = {Bowen Shi and Wei-Ning Hsu and Abdelrahman Mohamed},
    title = {Robust Self-Supervised Audio-Visual Speech Recognition},
    journal = {arXiv preprint arXiv:2201.01763}
    year = {2022}
}

License

AV-HuBERT LICENSE AGREEMENT

This License Agreement (as may be amended in accordance with this License Agreement, “License”), between you (“Licensee” or “you”) and Meta Platforms, Inc. (“Meta” or “we”) applies to your use of any computer program, algorithm, source code, object code, or software that is made available by Meta under this License (“Software”) and any specifications, manuals, documentation, and other written information provided by Meta related to the Software (“Documentation”).

By using the Software, you agree to the terms of this License. If you do not agree to this License, then you do not have any rights to use the Software or Documentation (collectively, the “Software Products”), and you must immediately cease using the Software Products.

Pre-trained and fine-tuned models

Please find the checkpoints here

Installation

First, create a conda virtual environment and activate it:

conda create -n avhubert python=3.8 -y
conda activate avhubert

Then, clone this directory:

git clone https://github.com/facebookresearch/av_hubert.git
cd avhubert
git submodule init
git submodule update

Lastly, install Fairseq and the other packages:

pip install -r requirements.txt
cd fairseq
pip install --editable ./

Load a pretrained model

$ cd avhubert
$ python
>>> import fairseq
>>> import hubert_pretraining, hubert
>>> ckpt_path = "/path/to/the/checkpoint.pt"
>>> models, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
>>> model = models[0]

Train a new model

Data preparation

Follow the steps in preparation to pre-process:

  • LRS3 and VoxCeleb2 datasets

Follow the steps in clustering (pre-train only) to create:

  • {train,valid}.km frame-aligned pseudo label files. The label_rate is the same as the feature frame rate used for clustering, which is 100Hz for MFCC features and 25Hz for AV-HuBERT features by default.

Pre-train an AV-HuBERT model

Suppose {train,valid}.tsv are saved at /path/to/data, {train,valid}.km are saved at /path/to/labels, the configuration file is saved at /path/to/conf/conf-name, and the label rate is 100Hz.

To train a model, run:

$ cd avhubert
$ fairseq-hydra-train --config-dir /path/to/conf/ --config-name conf-name \
  task.data=/path/to/data task.label_dir=/path/to/label \
  model.label_rate=100 hydra.run.dir=/path/to/experiment/pretrain/ \
  common.user_dir=`pwd`

Finetune an AV-HuBERT model with Seq2Seq

Suppose {train,valid}.tsv are saved at /path/to/data, {train,valid}.wrd are saved at /path/to/labels, the configuration file is saved at /path/to/conf/conf-name.

To fine-tune a pre-trained HuBERT model at /path/to/checkpoint, run:

$ cd avhubert
$ fairseq-hydra-train --config-dir /path/to/conf/ --config-name conf-name \
  task.data=/path/to/data task.label_dir=/path/to/label \
  task.tokenizer_bpe_model=/path/to/tokenizer model.w2v_path=/path/to/checkpoint \
  hydra.run.dir=/path/to/experiment/finetune/ common.user_dir=`pwd`

Decode an AV-HuBERT model

Suppose the test.tsv and test.wrd are the video list and transcripts of the split to be decoded, saved at /path/to/data, and the fine-tuned model is saved at /path/to/checkpoint.

Seq2Seq decoding

task.normalize needs to be consistent with the value used during fine-tuning. Decoding results will be saved at /path/to/experiment/decode/s2s/test.

$ cd avhubert
$ python -B infer_s2s.py --config-dir ./conf/ --config-name conf-name \
  dataset.gen_subset=test common_eval.path=/path/to/checkpoint \
  common_eval.results_path=/path/to/experiment/decode/s2s/test \
  override.modalities=['video'] common.user_dir=`pwd`

The command above uses the default decoding hyperparameter, which can be found in conf/s2s_decode.yaml. override.modalities can be set to ['video'] (for lip reading), or ['audio'] (for ASR) or ['audio','video'] (for audio-visual speech recognition).These parameters can be configured from the command line. For example, to search with a beam size of 20, we can append the command above with generation.beam=20. Important parameters include:

  • generation.beam
  • generation.lenpen

If you want to test your model under noisy environment, append the following to the above command.

+override.noise_wav=/path/to/noise override.noise_prob=1 override.noise_snr={snr}

{snr} is the signal-to-noise ratio (SNR) and /path/to/noise is a folder containing noise manifest files (/path/to/noise/{valid,test}.tsv). See preparation for setting up this folder.

Owner
Meta Research
Meta Research
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022