A self-supervised learning framework for audio-visual speech

Overview

AV-HuBERT (Audio-Visual Hidden Unit BERT)

Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction

Robust Self-Supervised Audio-Visual Speech Recognition

lip-reading

Introduction

AV-HuBERT is a self-supervised representation learning framework for audio-visual speech. It achieves state-of-the-art results in lip reading, ASR and audio-visual speech recognition on the LRS3 audio-visual speech benchmark.

If you find AV-HuBERT useful in your research, please use the following BibTeX entry for citation.

@inproceedings{shi2022avhubert,
    author  = {Bowen Shi and Wei-Ning Hsu and Kushal Lakhotia and Abdelrahman Mohamed},
    title = {Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction},
    year = {2022}
}

@article{shi2022avsr,
    author  = {Bowen Shi and Wei-Ning Hsu and Abdelrahman Mohamed},
    title = {Robust Self-Supervised Audio-Visual Speech Recognition},
    journal = {arXiv preprint arXiv:2201.01763}
    year = {2022}
}

License

AV-HuBERT LICENSE AGREEMENT

This License Agreement (as may be amended in accordance with this License Agreement, “License”), between you (“Licensee” or “you”) and Meta Platforms, Inc. (“Meta” or “we”) applies to your use of any computer program, algorithm, source code, object code, or software that is made available by Meta under this License (“Software”) and any specifications, manuals, documentation, and other written information provided by Meta related to the Software (“Documentation”).

By using the Software, you agree to the terms of this License. If you do not agree to this License, then you do not have any rights to use the Software or Documentation (collectively, the “Software Products”), and you must immediately cease using the Software Products.

Pre-trained and fine-tuned models

Please find the checkpoints here

Installation

First, create a conda virtual environment and activate it:

conda create -n avhubert python=3.8 -y
conda activate avhubert

Then, clone this directory:

git clone https://github.com/facebookresearch/av_hubert.git
cd avhubert
git submodule init
git submodule update

Lastly, install Fairseq and the other packages:

pip install -r requirements.txt
cd fairseq
pip install --editable ./

Load a pretrained model

$ cd avhubert
$ python
>>> import fairseq
>>> import hubert_pretraining, hubert
>>> ckpt_path = "/path/to/the/checkpoint.pt"
>>> models, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
>>> model = models[0]

Train a new model

Data preparation

Follow the steps in preparation to pre-process:

  • LRS3 and VoxCeleb2 datasets

Follow the steps in clustering (pre-train only) to create:

  • {train,valid}.km frame-aligned pseudo label files. The label_rate is the same as the feature frame rate used for clustering, which is 100Hz for MFCC features and 25Hz for AV-HuBERT features by default.

Pre-train an AV-HuBERT model

Suppose {train,valid}.tsv are saved at /path/to/data, {train,valid}.km are saved at /path/to/labels, the configuration file is saved at /path/to/conf/conf-name, and the label rate is 100Hz.

To train a model, run:

$ cd avhubert
$ fairseq-hydra-train --config-dir /path/to/conf/ --config-name conf-name \
  task.data=/path/to/data task.label_dir=/path/to/label \
  model.label_rate=100 hydra.run.dir=/path/to/experiment/pretrain/ \
  common.user_dir=`pwd`

Finetune an AV-HuBERT model with Seq2Seq

Suppose {train,valid}.tsv are saved at /path/to/data, {train,valid}.wrd are saved at /path/to/labels, the configuration file is saved at /path/to/conf/conf-name.

To fine-tune a pre-trained HuBERT model at /path/to/checkpoint, run:

$ cd avhubert
$ fairseq-hydra-train --config-dir /path/to/conf/ --config-name conf-name \
  task.data=/path/to/data task.label_dir=/path/to/label \
  task.tokenizer_bpe_model=/path/to/tokenizer model.w2v_path=/path/to/checkpoint \
  hydra.run.dir=/path/to/experiment/finetune/ common.user_dir=`pwd`

Decode an AV-HuBERT model

Suppose the test.tsv and test.wrd are the video list and transcripts of the split to be decoded, saved at /path/to/data, and the fine-tuned model is saved at /path/to/checkpoint.

Seq2Seq decoding

task.normalize needs to be consistent with the value used during fine-tuning. Decoding results will be saved at /path/to/experiment/decode/s2s/test.

$ cd avhubert
$ python -B infer_s2s.py --config-dir ./conf/ --config-name conf-name \
  dataset.gen_subset=test common_eval.path=/path/to/checkpoint \
  common_eval.results_path=/path/to/experiment/decode/s2s/test \
  override.modalities=['video'] common.user_dir=`pwd`

The command above uses the default decoding hyperparameter, which can be found in conf/s2s_decode.yaml. override.modalities can be set to ['video'] (for lip reading), or ['audio'] (for ASR) or ['audio','video'] (for audio-visual speech recognition).These parameters can be configured from the command line. For example, to search with a beam size of 20, we can append the command above with generation.beam=20. Important parameters include:

  • generation.beam
  • generation.lenpen

If you want to test your model under noisy environment, append the following to the above command.

+override.noise_wav=/path/to/noise override.noise_prob=1 override.noise_snr={snr}

{snr} is the signal-to-noise ratio (SNR) and /path/to/noise is a folder containing noise manifest files (/path/to/noise/{valid,test}.tsv). See preparation for setting up this folder.

Owner
Meta Research
Meta Research
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020