PIXIE: Collaborative Regression of Expressive Bodies

Related tags

Deep LearningPIXIE
Overview

PIXIE: Collaborative Regression of Expressive Bodies

[Project Page]

This is the official Pytorch implementation of PIXIE.

PIXIE reconstructs an expressive body with detailed face shape and hand articulation from a single image. PIXIE does this by regressing the body, face and hands directly from image pixels using a neural network that includes a novel moderator, which attends to add weights information about the different body parts. Unlike prior work, PIXIE estimates bodies with a gender-appropriate shape but does so in a gender neutral shape space to accommodate non-binary shapes. Please refer to the Paper for more details.

The main features of PIXIE are:

  • Expressive body estimation: Given a single image, PIXIE reconstructs the 3D body shape and pose, hand articulation and facial expression as SMPL-X parameters
  • Facial details: PIXIE extracts detailed face shape, including wrinkles, using DECA
  • Facial texture: PIXIE also returns a estimate of the albedo of the subject
  • Animation: The estimated body can be re-posed and animated
  • Robust: Tested on full-body images in unconstrained conditions. The moderation strategy prevents unnatural poses. Overall, our method is robust to: various poses, illumination conditions and occlusions
  • Accurate: state-of-the-art expressive body reconstruction
  • Fast: this is a direct regression method (pixels in, SMPL-X out)

Getting started

Please follow the installation instructions to install all necessary packages and download the data.

Demo

Expressive 3D body reconstruction

python demos/demo_fit_body.py --saveObj True 

This return the estimated 3D body geometry with texture, in the form of an obj file, and render it from multiple viewpoints. If you set the optional --deca_path argument then the result will also contain facial details from DECA, provided that the face moderator is confident enough. Please run python demos/demo_fit_body.py --help for a more detailed description of the various available options.

input body image, estimated 3D body, with facial details, with texture, different views

3D face reconstruction

python demos/demo_fit_face.py --saveObj True --showBody True

Note that, given only a face image, our method still regresses the full SMPL-X parameters, producing a body mesh (as shown in the rightmost image). Futher, note how different face shapes produce different body shapes. The face tells us a lot about the body.

input face image, estimated face, with facial details, with texture, whole body in T-pose

3D hand reconstruction

python demos/demo_fit_hand.py --saveObj True

We do not provide support for hand detection, please make sure that to pass hand-only images and flip horizontally all left hands.

input hand image, estimated hand, with texture(fixed texture).

Animation

python demos/demo_animate_body.py 

Bodies estimated by PIXIE are easily animated. For example, we can estimate the body from one image and animate with the poses regressed from a different image sequence.

The visualization contains the input image, the predicted expressive 3D body, the animation result, the reference video and its corresponding reconstruction. For the latter, the color of the hands and head represents the confidence of the corresponding moderators. A lighter color means that PIXIE trusts more the information of the body image rather than the parts, which can happen when a person is facing away from the camera for example.

Notes

You can find more details on our method, as well as a discussion of the limitations of PIXIE here.

Citation

If you find our work useful to your research, please consider citing:

@inproceedings{PIXIE:2021,
      title={Collaborative Regression of Expressive Bodies using Moderation}, 
      author={Yao Feng and Vasileios Choutas and Timo Bolkart and Dimitrios Tzionas and Michael J. Black},
      booktitle={International Conference on 3D Vision (3DV)},
      year={2021}
}

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms in the LICENSE.

Acknowledgments

For functions or scripts that are based on external sources, we acknowledge the origin individually in each file.
Here are some great resources we benefit from:

We would also like to thank the authors of other public body regression methods, which allow us to easily perform quantitative and qualitative comparisons:
HMR, SPIN, frankmocap

Last but not least, we thank Victoria Fernández Abrevaya, Yinghao Huang and Radek Danecek for their helpful comments and proof reading, and Yuliang Xiu for his help in capturing demo sequences. This research was partially supported by the Max Planck ETH Center for Learning Systems. Some of the images used in the qualitative examples come from pexels.com.

Contact

For questions, please contact [email protected].
For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Yao Feng
Yao Feng
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022