Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

Related tags

Deep LearningSPN
Overview

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid, submitted to IEEE. Pretrained models have been uploaded.

This project is for our new inpainting method SPN which has been submitted to IEEE under peer review. This work is an extension version of our previous work SPL (IJCAI'21). If you have any questions, feel free to make issues. Thanks for your interests!

Paper on Arxiv. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

Introduction:

Briefly speaking, in this work, we still focus on the key insight that learning semantic priors from specific pretext tasks can benefit image inpainting, and we further strengthen the modeling of the learned priors in this work from the following aspects:

  1. We exploit multi-scale semantic priors in a feature pyramid manner to achieve consistent understanding of both gloabl and local context. The image generator is also improved to incorporate the prior pyramid.
  2. We extend our prior learned in a probabilistic manner which enables our method to handle probabilistic image inpainting problem.
  3. Besides, more analyses of the learned prior pyramid and the choices of the semantic supervision are provided in our experiment part.

Prerequisites (same with SPL)

  • Python 3.7
  • PyTorch 1.8 (1.6+ may also work)
  • NVIDIA GPU + CUDA cuDNN
  • Inplace_Abn (only needed for training our model, used in ASL_TRresNet model)
  • torchlight (We only use it to record the printed information. You can change it as you want.)

Datasets

We use Places2, CelebA and Paris Street-View datasets for determinstic image inpainting which is same with SPL, and CelebA-HQ dataset is used for probabilistic image inpainting. We also used the irregular mask provided by Liu et al. which can be downloaded from their website. For the detailed processes of these datasets please refer to SPL and our paper.

Getting Strated

Since our approach can be applied for both deterministic and probabilistic image inpainting, so we seperate the codes under these two setups in different files and each file contains corresponding training and testing commonds.

For all setups, the common pre-preparations are list as follows:

  1. Download the pre-trained models and copy them under ./checkpoints directory.

  2. (For training) Make another directory, e.g ./pretrained_ASL, and download the weights of TResNet_L pretrained on OpenImage dataset to this directory.

  3. Install torchlight

cd ./torchlight
python setup.py install
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023