Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Related tags

Deep Learningibc
Overview

Implicit Behavioral Cloning

This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper:

Implicit Behavioral Cloning (website link) (arXiv link)
Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, Jonathan Tompson
Conference on Robot Learning (CoRL) 2021

Abstract

We find that across a wide range of robot policy learning scenarios, treating supervised policy learning with an implicit model generally performs better, on average, than commonly used explicit models. We present extensive experiments on this finding, and we provide both intuitive insight and theoretical arguments distinguishing the properties of implicit models compared to their explicit counterparts, particularly with respect to approximating complex, potentially discontinuous and multi-valued (set-valued) functions. On robotic policy learning tasks we show that implicit behavioral cloning policies with energy-based models (EBM) often outperform common explicit (Mean Square Error, or Mixture Density) behavioral cloning policies, including on tasks with high-dimensional action spaces and visual image inputs. We find these policies provide competitive results or outperform state-of-the-art offline reinforcement learning methods on the challenging human-expert tasks from the D4RL benchmark suite, despite using no reward information. In the real world, robots with implicit policies can learn complex and remarkably subtle behaviors on contact-rich tasks from human demonstrations, including tasks with high combinatorial complexity and tasks requiring 1mm precision.

Prerequisites

The code for this project uses python 3.7+ and the following pip packages:

python3 -m pip install --upgrade pip
pip install \
  absl-py==0.12.0 \
  gin-config==0.4.0 \
  matplotlib==3.4.3 \
  mediapy==1.0.3 \
  opencv-python==4.5.3.56 \
  pybullet==3.1.6 \
  scipy==1.7.1 \
  tensorflow==2.6.0 \
  tensorflow-probability==0.13.0 \
  tf-agents-nightly==0.10.0.dev20210930 \
  tqdm==4.62.2

(Optional): For Mujoco support, see docs/mujoco_setup.md. Recommended to skip it unless you specifically want to run the Adroit and Kitchen environments.

Quickstart: from 0 to a trained IBC policy in 10 minutes.

Step 1: Install listed Python packages above in Prerequisites.

Step 2: Run unit tests (should take less than a minute), and do this from the directory just above the top-level ibc directory:

./ibc/run_tests.sh

Step 3: Check that Tensorflow has GPU access:

python3 -c "import tensorflow as tf; print(tf.test.is_gpu_available())"

If the above prints False, see the following requirements, notably CUDA 11.2 and cuDNN 8.1.0: https://www.tensorflow.org/install/gpu#software_requirements.

Step 4: Let's do an example Block Pushing task, so first let's download oracle data (or see Tasks for how to generate it):

cd ibc/data
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip block_push_states_location.zip && rm block_push_states_location.zip
cd ../..

Step 5: Set PYTHONPATH to include the directory just above top-level ibc, so if you've been following the commands above it is:

export PYTHONPATH=$PYTHONPATH:${PWD}

Step 6: On that example Block Pushing task, we'll next do a training + evaluation with Implicit BC:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Some notes:

  • On an example single-GPU machine (GTX 2080 Ti), the above trains at about 18 steps/sec, and should get to high success rates in 5,000 or 10,000 steps (roughly 5-10 minutes of training).
  • The mlp_ebm.gin is just one config, with is meant to be reasonably fast to train, with only 20 evals at each interval, and is not suitable for all tasks. See Tasks for more configs.
  • Due to the --video flag above, you can watch a video of the learned policy in action at: /tmp/ibc_logs/mlp_ebm/ibc_dfo/... navigate to the videos/ttl=7d subfolder, and by default there should be one example .mp4 video saved every time you do an evaluation interval.

(Optional) Step 7: For the pybullet-based tasks, we also have real-time interactive visualization set up through a visualization server, so in one terminal:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 -m pybullet_utils.runServer

And in a different terminal run the oracle a few times with the --shared_memory flag:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 ibc/data/policy_eval.py -- \
  --alsologtostderr \
  --shared_memory \
  --num_episodes=3 \
  --policy=oracle_push \
  --task=PUSH

You're done with Quickstart! See below for more Tasks, and also see docs/codebase_overview.md and docs/workflow.md for additional info.

Tasks

Task: Particle

In this task, the goal is for the agent (black dot) to first go to the green dot, then the blue dot.

Example IBC policy Example MSE policy

Get Data

We can either generate data from scratch, for example for 2D (takes 15 seconds):

./ibc/ibc/configs/particle/collect_data.sh

Or just download all the data for all different dimensions:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/particle.zip
unzip particle.zip && rm particle.zip
cd ../..

Train and Evaluate

Let's start with some small networks, on just the 2D version since it's easiest to visualize, and compare MSE and IBC. Here's a small-network (256x2) IBC-with-Langevin config, where 2 is the argument for the environment dimensionality.

./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 2

And here's an idenitcally sized network (256x2) but with MSE config:

./ibc/ibc/configs/particle/run_mlp_mse.sh 2

For the above configurations, we suggest comparing the rollout videos, which you can find at /tmp/ibc_logs/...corresponding_directory../videos/. At the top of this section is shown a comparison at 10,000 training steps for the two different above configs.

And here are the best configs respectfully for IBC (with langevin) and MSE, in this case run on the 16-dimensional environment:

./ibc/ibc/configs/particle/run_mlp_ebm_langevin_best.sh 16
./ibc/ibc/configs/particle/run_mlp_mse_best.sh 16

Note: the _best config is kind of slow for Langevin to train, but even just ./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 16 (smaller network) seems to solve the 16-D environment pretty well, and is much faster to train.

Task: Block Pushing (from state observations)

Get Data

We can either generate data from scratch (~2 minutes for 2,000 episodes: 200 each across 10 replicas):

./ibc/ibc/configs/pushing_states/collect_data.sh

Or we can download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip 'block_push_states_location.zip' && rm block_push_states_location.zip
cd ../..

Train and Evaluate

Here's reasonably fast-to-train config for IBC with DFO:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Or here's a config for IBC with Langevin:

./ibc/ibc/configs/pushing_states/run_mlp_ebm_langevin.sh

Or here's a comparable, reasonably fast-to-train config for MSE:

./ibc/ibc/configs/pushing_states/run_mlp_mse.sh

Or to run the best configs respectfully for IBC, MSE, and MDN (some of these might be slower to train than the above):

./ibc/ibc/configs/pushing_states/run_mlp_ebm_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mse_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mdn_best.sh

Task: Block Pushing (from image observations)

Get Data

Download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_visual_location.zip
unzip 'block_push_visual_location.zip' && rm block_push_visual_location.zip
cd ../..

Train and Evaluate

Here is an IBC with Langevin configuration which should actually converge faster than the IBC-with-DFO that we reported in the paper:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_langevin.sh

And here are the best configs respectfully for IBC (with DFO), MSE, and MDN:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mse_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mdn_best.sh

Task: D4RL Adroit and Kitchen

Get Data

The D4RL human demonstration training data used for the paper submission can be downloaded using the commands below. This data has been processed into a .tfrecord format from the original D4RL data format:

cd ibc/data && mkdir -p d4rl_trajectories && cd d4rl_trajectories
wget https://storage.googleapis.com/brain-reach-public/ibc_data/door-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/hammer-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-complete-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-mixed-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-partial-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/pen-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/relocate-human-v0.zip
unzip '*.zip' && rm *.zip
cd ../../..

Run Train Eval:

Here are the best configs respectfully for IBC (with Langevin), and MSE: On a 2080 Ti GPU test, this IBC config trains at only 1.7 steps/sec, but it is about 10x faster on TPUv3.

./ibc/ibc/configs/d4rl/run_mlp_ebm_langevin_best.sh pen-human-v0
./ibc/ibc/configs/d4rl/run_mlp_mse_best.sh pen-human-v0

The above commands will run on the pen-human-v0 environment, but you can swap this arg for whichever of the provided Adroit/Kitchen environments.

Here also is an MDN config you can try. The network size is tiny but if you increase it heavily then it seems to get NaNs during training. In general MDNs can be finicky. A solution should be possible though.

./ibc/ibc/configs/d4rl/run_mlp_mdn.sh pen-human-v0

Summary for Reproducing Results

For the tasks that we've been able to open-source, results from the paper should be reproducible by using the linked data and command-line args below.

Task Figure/Table in paper Data Train + Eval commands
Coordinate regression Figure 4 See colab See colab
D4RL Adroit + Kitchen Table 2 Link Link
N-D particle Figure 6 Link Link
Simulated pushing, single target, states Table 3 Link Link
Simulated pushing, single target, pixels Table 3 Link Link

Citation

If you found our paper/code useful in your research, please consider citing:

@article{florence2021implicit,
    title={Implicit Behavioral Cloning},
    author={Florence, Pete and Lynch, Corey and Zeng, Andy and Ramirez, Oscar and Wahid, Ayzaan and Downs, Laura and Wong, Adrian and Lee, Johnny and Mordatch, Igor and Tompson, Jonathan},
    journal={Conference on Robot Learning (CoRL)},
    month = {November},
    year={2021}
}
Owner
Google Research
Google Research
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023