Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Related tags

Deep Learningibc
Overview

Implicit Behavioral Cloning

This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper:

Implicit Behavioral Cloning (website link) (arXiv link)
Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, Jonathan Tompson
Conference on Robot Learning (CoRL) 2021

Abstract

We find that across a wide range of robot policy learning scenarios, treating supervised policy learning with an implicit model generally performs better, on average, than commonly used explicit models. We present extensive experiments on this finding, and we provide both intuitive insight and theoretical arguments distinguishing the properties of implicit models compared to their explicit counterparts, particularly with respect to approximating complex, potentially discontinuous and multi-valued (set-valued) functions. On robotic policy learning tasks we show that implicit behavioral cloning policies with energy-based models (EBM) often outperform common explicit (Mean Square Error, or Mixture Density) behavioral cloning policies, including on tasks with high-dimensional action spaces and visual image inputs. We find these policies provide competitive results or outperform state-of-the-art offline reinforcement learning methods on the challenging human-expert tasks from the D4RL benchmark suite, despite using no reward information. In the real world, robots with implicit policies can learn complex and remarkably subtle behaviors on contact-rich tasks from human demonstrations, including tasks with high combinatorial complexity and tasks requiring 1mm precision.

Prerequisites

The code for this project uses python 3.7+ and the following pip packages:

python3 -m pip install --upgrade pip
pip install \
  absl-py==0.12.0 \
  gin-config==0.4.0 \
  matplotlib==3.4.3 \
  mediapy==1.0.3 \
  opencv-python==4.5.3.56 \
  pybullet==3.1.6 \
  scipy==1.7.1 \
  tensorflow==2.6.0 \
  tensorflow-probability==0.13.0 \
  tf-agents-nightly==0.10.0.dev20210930 \
  tqdm==4.62.2

(Optional): For Mujoco support, see docs/mujoco_setup.md. Recommended to skip it unless you specifically want to run the Adroit and Kitchen environments.

Quickstart: from 0 to a trained IBC policy in 10 minutes.

Step 1: Install listed Python packages above in Prerequisites.

Step 2: Run unit tests (should take less than a minute), and do this from the directory just above the top-level ibc directory:

./ibc/run_tests.sh

Step 3: Check that Tensorflow has GPU access:

python3 -c "import tensorflow as tf; print(tf.test.is_gpu_available())"

If the above prints False, see the following requirements, notably CUDA 11.2 and cuDNN 8.1.0: https://www.tensorflow.org/install/gpu#software_requirements.

Step 4: Let's do an example Block Pushing task, so first let's download oracle data (or see Tasks for how to generate it):

cd ibc/data
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip block_push_states_location.zip && rm block_push_states_location.zip
cd ../..

Step 5: Set PYTHONPATH to include the directory just above top-level ibc, so if you've been following the commands above it is:

export PYTHONPATH=$PYTHONPATH:${PWD}

Step 6: On that example Block Pushing task, we'll next do a training + evaluation with Implicit BC:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Some notes:

  • On an example single-GPU machine (GTX 2080 Ti), the above trains at about 18 steps/sec, and should get to high success rates in 5,000 or 10,000 steps (roughly 5-10 minutes of training).
  • The mlp_ebm.gin is just one config, with is meant to be reasonably fast to train, with only 20 evals at each interval, and is not suitable for all tasks. See Tasks for more configs.
  • Due to the --video flag above, you can watch a video of the learned policy in action at: /tmp/ibc_logs/mlp_ebm/ibc_dfo/... navigate to the videos/ttl=7d subfolder, and by default there should be one example .mp4 video saved every time you do an evaluation interval.

(Optional) Step 7: For the pybullet-based tasks, we also have real-time interactive visualization set up through a visualization server, so in one terminal:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 -m pybullet_utils.runServer

And in a different terminal run the oracle a few times with the --shared_memory flag:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 ibc/data/policy_eval.py -- \
  --alsologtostderr \
  --shared_memory \
  --num_episodes=3 \
  --policy=oracle_push \
  --task=PUSH

You're done with Quickstart! See below for more Tasks, and also see docs/codebase_overview.md and docs/workflow.md for additional info.

Tasks

Task: Particle

In this task, the goal is for the agent (black dot) to first go to the green dot, then the blue dot.

Example IBC policy Example MSE policy

Get Data

We can either generate data from scratch, for example for 2D (takes 15 seconds):

./ibc/ibc/configs/particle/collect_data.sh

Or just download all the data for all different dimensions:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/particle.zip
unzip particle.zip && rm particle.zip
cd ../..

Train and Evaluate

Let's start with some small networks, on just the 2D version since it's easiest to visualize, and compare MSE and IBC. Here's a small-network (256x2) IBC-with-Langevin config, where 2 is the argument for the environment dimensionality.

./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 2

And here's an idenitcally sized network (256x2) but with MSE config:

./ibc/ibc/configs/particle/run_mlp_mse.sh 2

For the above configurations, we suggest comparing the rollout videos, which you can find at /tmp/ibc_logs/...corresponding_directory../videos/. At the top of this section is shown a comparison at 10,000 training steps for the two different above configs.

And here are the best configs respectfully for IBC (with langevin) and MSE, in this case run on the 16-dimensional environment:

./ibc/ibc/configs/particle/run_mlp_ebm_langevin_best.sh 16
./ibc/ibc/configs/particle/run_mlp_mse_best.sh 16

Note: the _best config is kind of slow for Langevin to train, but even just ./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 16 (smaller network) seems to solve the 16-D environment pretty well, and is much faster to train.

Task: Block Pushing (from state observations)

Get Data

We can either generate data from scratch (~2 minutes for 2,000 episodes: 200 each across 10 replicas):

./ibc/ibc/configs/pushing_states/collect_data.sh

Or we can download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip 'block_push_states_location.zip' && rm block_push_states_location.zip
cd ../..

Train and Evaluate

Here's reasonably fast-to-train config for IBC with DFO:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Or here's a config for IBC with Langevin:

./ibc/ibc/configs/pushing_states/run_mlp_ebm_langevin.sh

Or here's a comparable, reasonably fast-to-train config for MSE:

./ibc/ibc/configs/pushing_states/run_mlp_mse.sh

Or to run the best configs respectfully for IBC, MSE, and MDN (some of these might be slower to train than the above):

./ibc/ibc/configs/pushing_states/run_mlp_ebm_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mse_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mdn_best.sh

Task: Block Pushing (from image observations)

Get Data

Download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_visual_location.zip
unzip 'block_push_visual_location.zip' && rm block_push_visual_location.zip
cd ../..

Train and Evaluate

Here is an IBC with Langevin configuration which should actually converge faster than the IBC-with-DFO that we reported in the paper:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_langevin.sh

And here are the best configs respectfully for IBC (with DFO), MSE, and MDN:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mse_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mdn_best.sh

Task: D4RL Adroit and Kitchen

Get Data

The D4RL human demonstration training data used for the paper submission can be downloaded using the commands below. This data has been processed into a .tfrecord format from the original D4RL data format:

cd ibc/data && mkdir -p d4rl_trajectories && cd d4rl_trajectories
wget https://storage.googleapis.com/brain-reach-public/ibc_data/door-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/hammer-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-complete-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-mixed-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-partial-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/pen-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/relocate-human-v0.zip
unzip '*.zip' && rm *.zip
cd ../../..

Run Train Eval:

Here are the best configs respectfully for IBC (with Langevin), and MSE: On a 2080 Ti GPU test, this IBC config trains at only 1.7 steps/sec, but it is about 10x faster on TPUv3.

./ibc/ibc/configs/d4rl/run_mlp_ebm_langevin_best.sh pen-human-v0
./ibc/ibc/configs/d4rl/run_mlp_mse_best.sh pen-human-v0

The above commands will run on the pen-human-v0 environment, but you can swap this arg for whichever of the provided Adroit/Kitchen environments.

Here also is an MDN config you can try. The network size is tiny but if you increase it heavily then it seems to get NaNs during training. In general MDNs can be finicky. A solution should be possible though.

./ibc/ibc/configs/d4rl/run_mlp_mdn.sh pen-human-v0

Summary for Reproducing Results

For the tasks that we've been able to open-source, results from the paper should be reproducible by using the linked data and command-line args below.

Task Figure/Table in paper Data Train + Eval commands
Coordinate regression Figure 4 See colab See colab
D4RL Adroit + Kitchen Table 2 Link Link
N-D particle Figure 6 Link Link
Simulated pushing, single target, states Table 3 Link Link
Simulated pushing, single target, pixels Table 3 Link Link

Citation

If you found our paper/code useful in your research, please consider citing:

@article{florence2021implicit,
    title={Implicit Behavioral Cloning},
    author={Florence, Pete and Lynch, Corey and Zeng, Andy and Ramirez, Oscar and Wahid, Ayzaan and Downs, Laura and Wong, Adrian and Lee, Johnny and Mordatch, Igor and Tompson, Jonathan},
    journal={Conference on Robot Learning (CoRL)},
    month = {November},
    year={2021}
}
Owner
Google Research
Google Research
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022