Implicit Deep Adaptive Design (iDAD)

Related tags

Deep Learningidad
Overview

Implicit Deep Adaptive Design (iDAD)

This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods'.

@article{ivanova2021implicit,
  title={Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods},
  author={Ivanova, Desi R. and Foster, Adam and Kleinegesse, Steven and Gutmann, Michael and Rainforth, Tom},
  journal={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Computing infrastructure requirements

We have tested this codebase on Linux (Ubuntu x86_64) and MacOS (Big Sur v11.2.3) with Python 3.8. To train iDAD networks, we recommend the use of a GPU. We used one GeForce RTX 3090 GPU on a machine with 126 GiB of CPU memory and 40 CPU cores.

Installation

  1. Ensure that Python and conda are installed.
  2. Create and activate a new conda virtual environment as follows
conda create -n idad_code
conda activate idad_code
  1. Install the correct version of PyTorch, following the instructions at pytorch.org. For our experiments we used torch==1.8.0 with CUDA version 11.1.
  2. Install the remaining package requirements using pip install -r requirements.txt.
  3. Install the torchsde package from its repository: pip install git+https://github.com/google-research/torchsde.git.

MLFlow

We use mlflow to log metric and store network parameters. Each experiment run is stored in a directory mlruns which will be created automatically. Each experiment is assigned a numerical and each run gets a unique . The iDAD networks will be saved in ./mlruns/ / /artifacts , which will be printed at the end of each training run.

Location Finding Experiment

To train an iDAD network with the InfoNCE bound to locate 2 sources in 2D, using the approach in the paper, execute the command

python3 location_finding.py \
    --num-steps 100000 \
    --num-experiments=10 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 64 \
    --hidden-dim 512 \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, using the approach in the paper, execute the command

python3 location_finding.py \
    --num-steps 100000 \
    --num-experiments=10 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 64 \
    --hidden-dim 512 \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static MINEBED baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0001 \
    --num-experiments 10 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static SG-BOED baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the adaptive (explicit likelihood) DAD baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator sPCE \
    --design-arch sum \
    --device <DEVICE>

To evaluate the resulting networks eun the following command

python3 eval_sPCE.py --experiment-id <ID>

To evaluate a random design baseline (requires no pre-training):

python3 baselines_locfin_nontrainable.py \
    --policy random \
    --physical-dim 2 \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To run the variational baseline (note: it takes a very long time), run:

python3 baselines_locfin_variational.py \
    --num-histories 128 \
    --num-experiments 10 \
    --physical-dim 2 \
    --lr 0.001 \
    --num-steps 5000\
    --device <DEVICE>

Copy path_to_artifact and pass it to the evaluation script:

python3 eval_sPCE_from_source.py \
    --path-to-artifact <path_to_artifact> \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

Pharmacokinetic Experiment

To train an iDAD network with the InfoNCE bound, using the approach in the paper, execute the command

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, using the approach in the paper, execute the command

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator NWJ \
    --gamma 0.5 \
    --device <DEVICE>

To run the static MINEBED baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.001 \
    --num-experiments 5 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static SG-BOED baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0005 \
    --num-experiments 5 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the adaptive (explicit likelihood) DAD baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator sPCE \
    --design-arch sum \
    --device <DEVICE>

To evaluate the resulting networks run the following command

python3 eval_sPCE.py --experiment-id <ID>

To evaluate a random design baseline (requires no pre-training):

python3 baselines_pharmaco_nontrainable.py \
    --policy random \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To evaluate an equal interval baseline (requires no pre-training):

python3 baselines_pharmaco_nontrainable.py \
    --policy equal_interval \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To run the variational baseline (note: it takes a very long time), run:

python3 baselines_pharmaco_variational.py \
    --num-histories 128 \
    --num-experiments 10 \
    --lr 0.001 \
    --num-steps 5000 \
    --device <DEVICE>

Copy path_to_artifact and pass it to the evaluation script:

python3 eval_sPCE_from_source.py \
    --path-to-artifact <path_to_artifact> \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

SIR experiment

For the SIR experiments, please first generate an initial training set and a test set:

python3 epidemic_simulate_data.py \
    --num-samples=100000 \
    --device <DEVICE>

To train an iDAD network with the InfoNCE bound, using the approach in the paper, execute the command

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.0005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --mi-estimator InfoNCE \
    --design-transform ts \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, execute the command

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.0005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --mi-estimator NWJ \
    --design-transform ts \
    --device <DEVICE>

To run the static SG-BOED baseline, run

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch static \
    --critic-arch cat \
    --design-transform iid \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the static MINEBED baseline, run

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.001 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch static \
    --critic-arch cat \
    --design-transform iid \
    --mi-estimator NWJ \
    --device <DEVICE>

To train a critic with random designs (to evaluate the random design baseline):

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch random \
    --critic-arch cat \
    --design-transform iid \
    --device <DEVICE>

To train a critic with equal interval designs, which is then used to evaluate the equal interval baseline, run the following

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.001 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch equal_interval \
    --critic-arch cat \
    --design-transform iid \
    --device <DEVICE>

Finally, to evaluate the different methods, run

python3 eval_epidemic.py \
    --experiment-id <ID> \
    --device <DEVICE>
Owner
Desi
Desi
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022