Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Overview

Contrastive learning of global and local features for medical image segmentation with limited annotations

The code is for the article "Contrastive learning of global and local features for medical image segmentation with limited annotations" which got accepted as an Oral presentation at NeurIPS 2020 (33rd international conference on Neural Information Processing Systems). With the proposed pre-training method using Contrastive learning, we get competitive segmentation performance with just 2 labeled training volumes compared to a benchmark that is trained with many labeled volumes.
https://arxiv.org/abs/2006.10511

Observations / Conclusions:

  1. For medical image segmentation, the proposed contrastive pre-training strategy incorporating domain knowledge present naturally across medical volumes yields better performance than baseline, other pre-training methods, semi-supervised, and data augmentation methods.
  2. Proposed local contrastive loss, an extension of global loss, provides an additional boost in performance by learning distinctive local-level representation to distinguish between neighbouring regions.
  3. The proposed pre-training strategy is complementary to semi-supervised and data augmentation methods. Combining them yields a further boost in accuracy.

Authors:
Krishna Chaitanya (email),
Ertunc Erdil,
Neerav Karani,
Ender Konukoglu.

Requirements:
Python 3.6.1,
Tensorflow 1.12.0,
rest of the requirements are mentioned in the "requirements.txt" file.

I) To clone the git repository.
git clone https://github.com/krishnabits001/domain_specific_dl.git

II) Install python, required packages and tensorflow.
Then, install python packages required using below command or the packages mentioned in the file.
pip install -r requirements.txt

To install tensorflow
pip install tensorflow-gpu=1.12.0

III) Dataset download.
To download the ACDC Cardiac dataset, check the website :
https://www.creatis.insa-lyon.fr/Challenge/acdc.

To download the Medical Decathlon Prostate dataset, check the website :
http://medicaldecathlon.com/

To download the MMWHS Cardiac dataset, check the website :
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/

All the images were bias corrected using N4 algorithm with a threshold value of 0.001. For more details, refer to the "N4_bias_correction.py" file in scripts.
Image and label pairs are re-sampled (to chosen target resolution) and cropped/zero-padded to a fixed size using "create_cropped_imgs.py" file.

IV) Train the models.
Below commands are an example for ACDC dataset.
The models need to be trained sequentially as follows (check "train_model/pretrain_and_fine_tune_script.sh" script for commands)
Steps :

  1. Step 1: To pre-train the encoder with global loss by incorporating proposed domain knowledge when defining positive and negative pairs.
    cd train_model/
    python pretr_encoder_global_contrastive_loss.py --dataset=acdc --no_of_tr_imgs=tr52 --global_loss_exp_no=2 --n_parts=4 --temp_fac=0.1 --bt_size=12

  2. Step 2: After step 1, we pre-train the decoder with proposed local loss to aid segmentation task by learning distinctive local-level representations.
    python pretr_decoder_local_contrastive_loss.py --dataset=acdc --no_of_tr_imgs=tr52 --pretr_no_of_tr_imgs=tr52 --local_reg_size=1 --no_of_local_regions=13 --temp_fac=0.1 --global_loss_exp_no=2 --local_loss_exp_no=0 --no_of_decoder_blocks=3 --no_of_neg_local_regions=5 --bt_size=12

  3. Step 3: We use the pre-trained encoder and decoder weights as initialization and fine-tune to segmentation task using limited annotations.
    python ft_pretr_encoder_decoder_net_local_loss.py --dataset=acdc --pretr_no_of_tr_imgs=tr52 --local_reg_size=1 --no_of_local_regions=13 --temp_fac=0.1 --global_loss_exp_no=2 --local_loss_exp_no=0 --no_of_decoder_blocks=3 --no_of_neg_local_regions=5 --no_of_tr_imgs=tr1 --comb_tr_imgs=c1 --ver=0

To train the baseline with affine and random deformations & intensity transformations for comparison, use the below code file.
cd train_model/
python tr_baseline.py --dataset=acdc --no_of_tr_imgs=tr1 --comb_tr_imgs=c1 --ver=0

V) Config files contents.
One can modify the contents of the below 2 config files to run the required experiments.
experiment_init directory contains 2 files.
Example for ACDC dataset:

  1. init_acdc.py
    --> contains the config details like target resolution, image dimensions, data path where the dataset is stored and path to save the trained models.
  2. data_cfg_acdc.py
    --> contains an example of data config details where one can set the patient ids which they want to use as train, validation and test images.

Bibtex citation:

@article{chaitanya2020contrastive,
  title={Contrastive learning of global and local features for medical image segmentation with limited annotations},
  author={Chaitanya, Krishna and Erdil, Ertunc and Karani, Neerav and Konukoglu, Ender},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}
Owner
Krishna Chaitanya
Doctoral Student, ETH Zurich
Krishna Chaitanya
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023