Labels4Free: Unsupervised Segmentation using StyleGAN

Overview

Labels4Free: Unsupervised Segmentation using StyleGAN

ICCV 2021

image Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthetic images

We propose an unsupervised segmentation framework for StyleGAN generated objects. We build on two main observations. First, the features generated by StyleGAN hold valuable information that can be utilized towards training segmentation networks. Second, the foreground and background can often be treated to be largely independent and be swapped across images to produce plausible composited images. For our solution, we propose to augment the Style-GAN2 generator architecture with a segmentation branch and to split the generator into a foreground and background network. This enables us to generate soft segmentation masks for the foreground object in an unsupervised fashion. On multiple object classes, we report comparable results against state-of-the-art supervised segmentation networks, while against the best unsupervised segmentation approach we demonstrate a clear improvement, both in qualitative and quantitative metrics.

Labels4Free: Unsupervised Segmentation Using StyleGAN (ICCV 2021)
Rameen Abdal, Peihao Zhu, Niloy Mitra, Peter Wonka
KAUST, Adobe Research

[Paper] [Project Page] [Video]

Installation

Clone this repo.

git clone https://github.com/RameenAbdal/Labels4Free.git
cd Labels4Free/

This repo is based on the Pytorch implementation of StyleGAN2 (rosinality/stylegan2-pytorch). Refer to this repo for setting up the environment, preparation of LMDB datasets and downloading pretrained weights of the models.

Download the pretrained weights of Alpha Networks here

Training the models

The models were trained on 4 RTX 2080 (24 GB) GPUs. In order to train the models using the settings in the paper use the following commands for each dataset.

Checkpoints and samples are saved in ./checkpoint and ./sample folders.

FFHQ dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 1024 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [FFHQ_CONFIG-F_CHECKPOINT]--loss_multiplier 1.2 --iter 1200 --trunc 1.0 --lr 0.0002 --reproduce_model

LSUN-Horse dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_HORSE_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 500 --trunc 1.0 --lr 0.0002 --reproduce_model

LSUN-Cat dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAT_CONFIG-F_CHECKPOINT]  --loss_multiplier 3 --iter 900 --trunc 0.5 --lr 0.0002 --reproduce_model

LSUN-Car dataset

python train.py --size 512 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAR_CONFIG-F_CHECKPOINT] --loss_multiplier 10 --iter 50 --trunc 0.3 --lr 0.002 --sat_weight 1.0 --model_save_freq 25 --reproduce_model --use_disc

In order to train your own models using different settings e.g on a single GPU, using different samples, iterations etc. use the following commands.

FFHQ dataset

python train.py --size 1024 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [FFHQ_CONFIG-F_CHECKPOINT] --loss_multiplier 1.2 --iter 2000 --trunc 1.0 --lr 0.0002 --bg_coverage_wt 3 --bg_coverage_value 0.4

LSUN-Horse dataset

python train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_HORSE_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 2000 --trunc 1.0 --lr 0.0002 --bg_coverage_wt 6 --bg_coverage_value 0.6

LSUN-Cat dataset

python train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAT_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 2000 --trunc 0.5 --lr 0.0002 --bg_coverage_wt 4 --bg_coverage_value 0.35

LSUN-Car dataset

python train.py --size 512 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAR_CONFIG-F_CHECKPOINT] --loss_multiplier 20 --iter 750 --trunc 0.3 --lr 0.0008 --sat_weight 0.1 --bg_coverage_wt 40 --bg_coverage_value 0.75 --model_save_freq 50

Sample from the pretrained model

Samples are saved in ./test_sample folder.

python test_sample.py --size [SIZE] --batch 2 --n_sample 100 --ckpt_bg_extractor [ALPHANETWORK_MODEL] --ckpt_generator [GENERATOR_MODEL] --th 0.9

Results on Custom dataset

Folder: Custom dataset, predicted and ground truth masks.

python test_customdata.py --path_gt [GT_Folder] --path_pred [PRED_FOLDER]

Citation

@InProceedings{Abdal_2021_ICCV,
    author    = {Abdal, Rameen and Zhu, Peihao and Mitra, Niloy J. and Wonka, Peter},
    title     = {Labels4Free: Unsupervised Segmentation Using StyleGAN},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {13970-13979}
}

Acknowledgments

This implementation builds upon the Pytorch implementation of StyleGAN2 (rosinality/stylegan2-pytorch). This work was supported by Adobe Research and KAUST Office of Sponsored Research (OSR).

Owner
PhD @ KAUST
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023