Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Related tags

Deep Learningtzer
Overview


ArtifactReproduce BugsQuick StartInstallationExtend Tzer

Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation

This is the source code repo for "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation" (Conditionally accepted by OOPSLA'22).

Artifact

Please check here for detailed documentation of the artifact prepared for OOPSLA'22.

Reproduce Bugs

Till submission, Tzer has been detected 40 bugs for TVM with 30 confirmed and 24 fixed (merged in the latest branch). Due to the anonymous review policy of OOPSLA, the links of actual bug reports will be provided after the review process.

We provide strong reproducibility of our work. To reproduce all bugs, all you need to do is a single click Open In Colab on your browser. Since some bugs need to be triggered by some complex GPU settings, to maximumly ease the hardware and software effort, the bugs are summarized in a Google Colab environment (No GPU required, but just a browser!).

Quick Start

You can easily start using Tzer with docker.

docker run --rm -it tzerbot/oopsla

# Inside the image.
cd tzer
python3 src/main_tir.py --fuzz-time 10     --report-folder ten-minute-fuzz
#                       run for 10 min.    bugs in folder `ten-minute-fuzz`

Successful installation looks like:

Report folder contents [click to expand]
  • cov_by_time.txt: a csv file where columns means "time" (second) and edge coverage;
  • ${BUG_TYPE}_${BUG_ID}.error_message.txt: error message snapshot of failures;
  • ${BUG_TYPE}_${BUG_ID}.ctx: context data to reproduce bugs (stored in Pickle. See config.py)
  • meta.txt: metadata including git version of TVM and experiment time;
  • tir_by_time.pickle: generated <F, P> (i.e., TIR and Passes) files (if TIR_REC=1 is set);
  • valid_seed_new_cov_count.txt: number of generated valid tests with new coverage;
Main commandline options [click to expand]

Commandline options (added as tail of commands):

  • --fuzz-time: Time budget of fuzzing (minute);
  • --tolerance: Parameter $N_{max}$ in the paper (control the interleaving of IR and pass mutation);
  • --report-folder: Path to store results (e.g., coverage trend);

Environment variables to control the algorithm options (added the prefix of commands):

  • PASS=1 to enable pass mutation;
  • NO_SEEDS=1 to disable initial seeds (start from an empty function);
  • NO_COV=1 to disable the coverage feedback;
  • TIR_REC=1to record generated TIR files (for evaluating non-coverage version);
Reproduce ablation study [click to expand]
# (1): General IR Mutation (No Coverage)*
TVM_HOME=$TVM_NO_COV_HOME PYTHONPATH=$TVM_HOME/python TIR_REC=1 NO_COV=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-1
python3 src/get_cov.py --folders ablation-1 # Evaluate samples on instrumented TVM to get coverage results.

# (2): (1) + Coverage Guidance
python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-2

# (3): (2) + Domain-Specific IR Mutation
LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-3

# (4): (3) + Random Pass Mutation
PASS=1 RANDOM_PASS=1 LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-4

# (5): (3) + Evolutionary IR-Pass Mutation
# aka: Best Tzer! Pleasse use this command if you want to compare Tzer with your own system~
PASS=1 LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-5 --tolerance 4

Note that fuzzing is performance-sensitive: To obtain reliable results, evaluation should be conducted in a "clean" environment (e.g., close irrelavant processes as many as possible). To determine how "clean" your environment is, you can log the load average of your Linux system. Expected load average should be around 1 or lower (as what we did in the experiments).

Installation

Expected requirements [click to expand]
  • Hardware: 8GB RAM; 256G Storage; X86 CPU; Good Network to GitHub; Docker (for Docker installation)
  • Software: Linux (tested under Manjaro and Ubuntu20.04. Other Linux distributions should also work)

We provide 3 methods for installing Tzer:

Docker Hub (Recommended, Out-of-the-box!) [click to expand]

Directly run Tzer in pre-built container image! Make sure you have docker installed.

docker run --rm -it tzerbot/oopsla
Docker Build (10~20 min., for customized development) [click to expand]

Build Tzer under a docker environment! Make sure you have docker installed.

  1. git clone https://github.com/Tzer-AnonBot/tzer.git && cd tzer
  2. docker build --tag tzer-oopsla:eval .
  3. docker run --rm -it tzer-oopsla:eval
Manual Build (20~30 min., for customized dev. and native performance) [click to expand]
Build Tzer natively on your Linux:

Prepare dependencies:

# Arch Linux / Manjaro
sudo pacman -Syy
sudo pacman -S compiler-rt llvm llvm-libs compiler-rt clang cmake git python3
# Ubuntu
sudo apt update
sudo apt install -y libfuzzer-12-dev # If you fail, try "libfuzzer-11-dev", "-10-dev", ...
sudo apt install -y clang cmake git python3

Build TVM and Tzer:

git clone https://github.com/Tzer-AnonBot/tzer.git
cd tzer/tvm_cov_patch

# Build TVM with intruments
bash ./build_tvm.sh # If you fail, check the script for step-by-step instruction;
cd ../../../
# If success:
# tvm with coverage is installed under `tvm_cov_patch/tvm`
# tvm without coverage is under `tvm_cov_patch/tvm-no-cov`

# Install Python dependency
python3 -m pip install -r requirements.txt

# Set up TVM_HOME and PYTHONPATH env var before using TVM and Tzer.
export TVM_HOME=$(realpath tvm_cov_patch/tvm)
export TVM_NO_COV_HOME=$(realpath tvm_cov_patch/tvm-no-cov)
export PYTHONPATH=$TVM_HOME/python

Extend Tzer

We implemented many re-usable functionalities for future and open research! To easily implement other coverage-guided fuzzing algorithm for TVM, after your installing TVM with memcov by applying tvm_cov_patch/memcov4tvm.patch to TVM (See tvm_cov_patch/build_tvm.sh), you can get current coverage of TVM by:

from tvm.contrib import coverage

print(coverage.get_now()) # Current visited # of CFG edges
print(coverage.get_total()) # Total number of # of CFG edges

coverage.push() # store current coverage snapshot to a stack and reset it to empty (useful for multi-process scenario)
coverage.pop()  # merge the top snapshot from the stack. 

Usage push-pop combo: Some times the target program might crash, but we don't want the fuzzer to be affected by the failure. Therefore, you can set a "safe guard" by:

  1. push: save current snapshot and reset the coverage hitmap;
  2. raise a sub-process to compile target IR & passes with TVM;
  3. pop: merge the snapshot of the sub-process and last stored snapshot (top of the stack) to get a complete coverage.

Latency of the combo is optimized to ~1ms as we applied bit-level optimization.

Cite Us

Please cite our paper if you find our contributions are helpful. :-)

@inproceedings{tzer-2022,
  title={Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation},
  author={Liu, Jiawei and Wei, Yuxiang and Yang, Sen and Deng, Yinlin and Zhang, Lingming},
  booktitle={Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications},
  year={2022}
}
You might also like...
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Releases(tvm-0.8.dev1040)
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023