a spacial-temporal pattern detection system for home automation

Related tags

Deep Learningargos
Overview

Argos

docker pulls

a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistant via MQTT or webhooks.

Demo

Have a spare raspberry pi or jetson nano (or old laptop/mac mini) lying around? Have wifi connected security cams in your house (or a raspi camera)? Want to get notified when someone exits or enters your main door? When someone waters your plants (or forgets to)? When your dog hasn't been fed food in a while, or hasn't eaten? When someone left the fridge door open and forgot? left the gas stove running and forgot? when birds are drinking from your dog's water bowl? Well, you're not alone, and you're at the right place :)

Architecture

argos

  • Take a video input (a raspberry pi camera if run on a rpi, an RTMP stream of a security cam, or a video file)
  • Run a simple motion detection algorithm on the stream, applying minimum box thresholds, negative masks and masks
  • Run object detection on either the cropped frame where motion was detected or even the whole frame if needed, using tensorflow object detection API. There is support for both tensorflow 1 and 2 as well as tensorflow lite, and custom models as well
  • Serves a flask webserver to allow you to see the motion detection and object detection in action, serve a mpeg stream which can be configured as a camera in HomeAssistant
  • Object detection is also highly configurable to threshold or mask out false positives
  • Object detection features an optional "detection buffer' which can be used to get the average detection in moving window of frames before reporting the maximum cumulative average detection
  • Supports sending notifications to HomeAssistant via MQTT or webhooks. Webhook notification send the frame on which the detection was triggered, to allow you to create rich media notifications from it via the HA android or iOS apps.
  • Pattern detection: both the motion-detector and object-detector send events to a queue which is monitored and analyzed by a pattern detector. You can configure your own "movement patterns" - e.g. a person is exiting a door or entering a door, or your dog is going to the kitchen. It keeps a configurable history of states (motion detected in a mask, outside a mask, object detected (e.g. person), etc.) and your movement patterns are pre-configured sequence of states which identify that movement. door_detect.py provides a movement pattern detector to detect if someone is entering or exiting a door
  • All of the above functionality is provided by running stream.py. There's also serve.py which serves as an object detection service which can be called remotely from a low-grade CPU device like a raspberry pi zero w which cannot run tensorflow lite on its own. The motion detector can still be run on the pi zero, and only object detection can be done remotely by calling this service, making a distributed setup.
  • Architected to be highly concurrent and asynchronous (uses threads and queue's between all the components - flask server, motion detector, object detector, pattern detector, notifier, mqtt, etc)
  • Has tools to help you generate masks, test and tune the detectors, etc.
  • Every aspect of every detector can be tuned in the config files (which are purposefully kept as python classes and not yaml), every aspect is logged with colored output on the console for you to debug what is going on.

Installation

On a pi, as a systemd service
cd ~
git clone https://github.com/angadsingh/argos
sudo apt-get install python3-pip
sudo apt-get install python3-venv
pip3 install --upgrade pip
python3 -m venv argos-venv/
source argos-venv/bin/activate
pip install https://github.com/bitsy-ai/tensorflow-arm-bin/releases/download/v2.4.0/tensorflow-2.4.0-cp37-none-linux_armv7l.whl
pip install wheel
pip install -r argos/requirements.txt

#only required for tf2
git clone https://github.com/tensorflow/models.git
cd models/research/object_detection/packages/tf2
python -m pip install . --no-deps

make a systemd service to run it automatically

cd ~/argos
sudo cp resources/systemd/argos_serve.service /etc/systemd/system/
sudo cp resources/systemd/argos_stream.service /etc/systemd/system/
sudo systemctl daemon-reload
sudo systemctl enable argos_serve.service
sudo systemctl enable argos_stream.service
sudo systemctl start argos_serve
sudo systemctl start argos_stream

see the logs

journalctl --unit argos_stream.service -f
As a docker container

You can use the following instructions to install argos as a docker container (e.g. if you already use docker on your rpi for hassio-supervised, or you intend to install it on your synology NAS which has docker, or you just like docker)

Install docker (optional)

curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh

Run argos as a docker container

Note: replace the docker tag name below for your cpu architecture

image example device notes
angadsingh/argos:armv7 raspberry pi 2/3/4+
angadsingh/argos:x86_64 PC, Mac
angadsingh/argos:x86_64_gpu PC, Mac tensorflow with gpu support. run with docker flag --runtime=nvidia

stream.py:

docker run --rm -p8081:8081 -v configs:/configs \
						-v /home/pi/detections:/output_detections \
						-v /home/pi/argos-ssh:/root/.ssh angadsingh/argos:armv7 \
						/usr/src/argos/stream.py --ip 0.0.0.0 --port 8081 \
						--config configs.your_config

serve.py:

docker run --rm -p8080:8080 -v configs:/configs \
						-v /home/pi/upload:/upload angadsingh/argos:armv7 \
						/usr/src/argos/serve.py --ip 0.0.0.0 --port 8080 \
						--config configs.your_config  --uploadfolder "/upload"

make a systemd service to run it automatically. these services automatically download the latest docker image and run them for you: (note: you'll have to change the docker tag inside the service file for your cpu architecture)

sudo wget https://raw.githubusercontent.com/angadsingh/argos/main/resources/systemd/argos_serve_docker.service -P /etc/systemd/system/
sudo wget https://raw.githubusercontent.com/angadsingh/argos/main/resources/systemd/argos_stream_docker.service -P /etc/systemd/system/
sudo systemctl daemon-reload
sudo systemctl enable argos_serve_docker.service
sudo systemctl enable argos_stream_docker.service
sudo systemctl start argos_serve_docker
sudo systemctl start argos_stream_docker

see the logs

journalctl --unit argos_serve_docker.service -f
journalctl --unit argos_stream_docker.service -f

Usage

stream.py - runs the motion detector, object detector (with detection buffer) and pattern detector

stream.py --ip 0.0.0.0 --port 8081 --config configs.config_tflite_ssd_example
Method Endpoint Description
Browse / will show a web page with the real time processing of the input video stream, and a separate video stream showing the object detector output
GET /status status shows the current load on the system
GET /config shows the config
GET /config?= will let you edit any config parameter without restarting the service
GET /image returns the latest frame as a JPEG image (useful in HA generic camera platform)
GET /video_feed streams an MJPEG video stream of the motion detector (useful in HA generic camera platform)
GET /od_video_feed streams an MJPEG video stream of the object detector

serve.py

serve.py --ip 0.0.0.0 --port 8080 --config configs.config_tflite_ssd_example --uploadfolder upload
Method Endpoint Description
POST /detect params:

file: the jpeg file to run the object detector on
threshold: object detector threshold (override config.tf_accuracy_threshold)
nmask: base64 encoded negative mask to apply. format: (xmin, ymin, xmax, ymax)

Home assistant automations

ha_automations/notify_door_movement_at_entrance.yaml - triggered by pattern detector ha_automations/notify_person_is_at_entrance.yaml - triggered by object detector

both of these use HA webhooks. i used MQTT earlier but it was too delayed and unreliable for my taste. the project still supports MQTT though and you'll have to make mqtt sensors in HA for the topics you're sending the notifications to here.

Configuration

both stream.py and serve.py share some configuration for the object detection, but stream.py builds on top of that with a lot more configuration for the motion detector, object detection buffer, pattern detector, and stream input configuration, etc. The example config documents the meaning of all the parameters

Performance

This runs at the following FPS with every component enabled:

device component fps
raspberry pi 4B motion detector 18 fps
raspberry pi 4B object detector (tflite) 5 fps

I actually run multiple of these for different RTMP cameras, each at 1 fps (which is more than enough for all real time home automation use cases)

Note:

This is my own personal project. It is not really written in a readable way with friendly abstractions, as that wasn't the goal. The goal was to solve my home automation problem quickly so that I can get back to real work :) So feel free to pick and choose snippets of code as you like or the whole solution if it fits your use case. No compromises were made in performance or accuracy, only 'coding best practices'. I usually keep such projects private but thought this is now meaty enough to be usable to someone else in ways I cannot imagine, so don't judge this project on its maturity or reuse readiness level ;) . Feel free to fork this project and make this an extendable framework if you have the time.

If you have any questions feel free to raise a github issue and i'll respond as soon as possible

Special thanks to these resources on the web for helping me build this.

Owner
Angad Singh
Angad Singh
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

šŸŽ Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022