Deep Reinforcement Learning based Trading Agent for Bitcoin

Overview

Deep Trading Agent

license dep1 dep2 dep3 dep4 dep4
Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation.

model
For complete details of the dataset, preprocessing, network architecture and implementation, refer to the Wiki of this repository.

Requirements

  • Python 2.7
  • Tensorflow
  • Pandas (for pre-processing Bitcoin Price Series)
  • tqdm (for displaying progress of training)

To setup a ubuntu virtual machine with all the dependencies to run the code, refer to assets/vm.

Run with Docker

Pull the prebuilt docker image directly from docker hub and run it as

docker pull samre12/deep-trading-agent:latest
docker run -p 6006:6006 -it samre12/deep-trading-agent:latest

OR

Build the docker image locally by executing the command and the run the image as

docker build -t deep-trading-agent .
docker run -p 6006:6006 -it deep-trading-agent

This will setup the repository for training the agent and

  • mount the current directory into /deep-trading-agent in the container

  • during image build, the latest transactions history from the exchange is pulled and sampled to create per-minute scale dataset of Bitcoin prices. This dataset is placed at /deep-trading-agent/data/btc.csv

  • to initiate training of the agent, specify suitable parameters in a config file (an example config file is provided at /deep-trading-agent/code/config/config.cfg) and run the code using /deep-trading-agent/code/main.py

  • training supports logging and monitoring through Tensorboard

  • vim and screen are installed in the container to edit the configuration files and run tensorboard

  • bind port 6006 of container to 6006 of host machine to monitor training using Tensorboard

Support

Please give a to this repository to support the project 😄 .

ToDo

Docker Support

  • Add Docker support for a fast and easy start with the project

Improve Model performance

  • Extract highest and lowest prices and the volume of Bitcoin traded within a given time interval in the Preprocessor
  • Use closing, highest, lowest prices and the volume traded as input channels to the model (remove features calculated just using closing prices)
  • Normalize the price tensors using the price of the previous time step
  • For the complete state representation, input the remaining number of trades to the model
  • Use separate diff price blocks to calculate the unrealized PnL
  • Use exponentially decayed weighted unrealized PnL as a reward function to incorporate current state of investment and stabilize the learning of the agent

Trading Model

is inspired by Deep Q-Trading where they solve a simplified trading problem for a single asset.
For each trading unit, only one of the three actions: neutral(1), long(2) and short(3) are allowed and a reward is obtained depending upon the current position of agent. Deep Q-Learning agent is trained to maximize the total accumulated rewards.
Current Deep Q-Trading model is modified by using the Deep Sense architecture for Q function approximation.

Dataset

Per minute Bitcoin series is obtained by modifying the procedure mentioned in this repository. Transactions in the Coinbase exchange are sampled to generate the Bitcoin price series.
Refer to assets/dataset to download the dataset.

Preprocessing

Basic Preprocessing
Completely ignore missing values and remove them from the dataset and accumulate blocks of continuous values using the timestamps of the prices.
All the accumulated blocks with number of timestamps lesser than the combined history length of the state and horizon of the agent are then filtered out since they cannot be used for training of the agent.
In the current implementation, past 3 hours (180 minutes) of per minute Bitcoin prices are used to generate the representation of the current state of the agent.
With the existing dataset (at the time of writing), following are the logs generated while preprocessing the dataset:

INFO:root:Number of blocks of continuous prices found are 58863
INFO:root:Number of usable blocks obtained from the dataset are 887
INFO:root:Number of distinct episodes for the current configuration are 558471

Advanced Preprocessing
Process missing values and concatenate smaller blocks to increase the sizes of continuous price blocks.
Standard technique in literature to fill the missing values in a way that does not much affect the performance of the model is using exponential filling with no decay.
(To be implemented)

Implementation

Tensorflow "1.1.0" version is used for the implementation of the Deep Sense network.

Deep Sense

Implementation is adapted from this Github repository with a few simplifications in the network architecture to incorporate learning over a single time series of the Bitcoin data.

Deep Q Trading

Implementation and preprocessing is inspired from this Medium post. The actual implementation of the Deep Q Network is adapted from DQN-tensorflow.

Owner
Kartikay Garg
Major in Mathematics and Computing
Kartikay Garg
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022