Deep Reinforcement Learning based Trading Agent for Bitcoin

Overview

Deep Trading Agent

license dep1 dep2 dep3 dep4 dep4
Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation.

model
For complete details of the dataset, preprocessing, network architecture and implementation, refer to the Wiki of this repository.

Requirements

  • Python 2.7
  • Tensorflow
  • Pandas (for pre-processing Bitcoin Price Series)
  • tqdm (for displaying progress of training)

To setup a ubuntu virtual machine with all the dependencies to run the code, refer to assets/vm.

Run with Docker

Pull the prebuilt docker image directly from docker hub and run it as

docker pull samre12/deep-trading-agent:latest
docker run -p 6006:6006 -it samre12/deep-trading-agent:latest

OR

Build the docker image locally by executing the command and the run the image as

docker build -t deep-trading-agent .
docker run -p 6006:6006 -it deep-trading-agent

This will setup the repository for training the agent and

  • mount the current directory into /deep-trading-agent in the container

  • during image build, the latest transactions history from the exchange is pulled and sampled to create per-minute scale dataset of Bitcoin prices. This dataset is placed at /deep-trading-agent/data/btc.csv

  • to initiate training of the agent, specify suitable parameters in a config file (an example config file is provided at /deep-trading-agent/code/config/config.cfg) and run the code using /deep-trading-agent/code/main.py

  • training supports logging and monitoring through Tensorboard

  • vim and screen are installed in the container to edit the configuration files and run tensorboard

  • bind port 6006 of container to 6006 of host machine to monitor training using Tensorboard

Support

Please give a to this repository to support the project 😄 .

ToDo

Docker Support

  • Add Docker support for a fast and easy start with the project

Improve Model performance

  • Extract highest and lowest prices and the volume of Bitcoin traded within a given time interval in the Preprocessor
  • Use closing, highest, lowest prices and the volume traded as input channels to the model (remove features calculated just using closing prices)
  • Normalize the price tensors using the price of the previous time step
  • For the complete state representation, input the remaining number of trades to the model
  • Use separate diff price blocks to calculate the unrealized PnL
  • Use exponentially decayed weighted unrealized PnL as a reward function to incorporate current state of investment and stabilize the learning of the agent

Trading Model

is inspired by Deep Q-Trading where they solve a simplified trading problem for a single asset.
For each trading unit, only one of the three actions: neutral(1), long(2) and short(3) are allowed and a reward is obtained depending upon the current position of agent. Deep Q-Learning agent is trained to maximize the total accumulated rewards.
Current Deep Q-Trading model is modified by using the Deep Sense architecture for Q function approximation.

Dataset

Per minute Bitcoin series is obtained by modifying the procedure mentioned in this repository. Transactions in the Coinbase exchange are sampled to generate the Bitcoin price series.
Refer to assets/dataset to download the dataset.

Preprocessing

Basic Preprocessing
Completely ignore missing values and remove them from the dataset and accumulate blocks of continuous values using the timestamps of the prices.
All the accumulated blocks with number of timestamps lesser than the combined history length of the state and horizon of the agent are then filtered out since they cannot be used for training of the agent.
In the current implementation, past 3 hours (180 minutes) of per minute Bitcoin prices are used to generate the representation of the current state of the agent.
With the existing dataset (at the time of writing), following are the logs generated while preprocessing the dataset:

INFO:root:Number of blocks of continuous prices found are 58863
INFO:root:Number of usable blocks obtained from the dataset are 887
INFO:root:Number of distinct episodes for the current configuration are 558471

Advanced Preprocessing
Process missing values and concatenate smaller blocks to increase the sizes of continuous price blocks.
Standard technique in literature to fill the missing values in a way that does not much affect the performance of the model is using exponential filling with no decay.
(To be implemented)

Implementation

Tensorflow "1.1.0" version is used for the implementation of the Deep Sense network.

Deep Sense

Implementation is adapted from this Github repository with a few simplifications in the network architecture to incorporate learning over a single time series of the Bitcoin data.

Deep Q Trading

Implementation and preprocessing is inspired from this Medium post. The actual implementation of the Deep Q Network is adapted from DQN-tensorflow.

Owner
Kartikay Garg
Major in Mathematics and Computing
Kartikay Garg
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022