NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

Overview

NeoDTI

NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

Recent Update 09/06/2018

L2 regularization is added.

Requirements

  • Tensorflow (tested on version 1.0.1 and version 1.2.0)
  • tflearn
  • numpy (tested on version 1.13.3 and version 1.14.0)
  • sklearn (tested on version 0.18.1 and version 0.19.0)

Quick start

To reproduce our results:

  1. Unzip data.zip in ./data.
  2. Run NeoDTI_cv.py to reproduce the cross validation results of NeoDTI. Options are:
    -d: The embedding dimension d, default: 1024.
    -n: Global norm to be clipped, default: 1.
    -k: The dimension of project matrices, default: 512.
    -r: Positive and negative. Two choices: ten and all, the former one sets the positive:negative = 1:10, the latter one considers all unknown DTIs as negative examples. Default: ten.
    -t: Test scenario. The DTI matrix to be tested. Choices are: o, mat_drug_protein.txt will be tested; homo, mat_drug_protein_homo_protein_drug.txt will be tested; drug, mat_drug_protein_drug.txt will be tested; disease, mat_drug_protein_disease.txt will be tested; sideeffect, mat_drug_protein_sideeffect.txt will be tested; unique, mat_drug_protein_drug_unique.txt will be tested. Default: o.
  3. Run NeoDTI_cv_with_aff.py to reproduce the cross validation results of NeoDTI with additional compound-protein binding affinity data. Options are:
    -d: The embedding dimension d, default: 1024.
    -n: Global norm to be clipped, default: 1.
    -k: The dimension of project matrices, default: 512.

Data description

  • drug.txt: list of drug names.
  • protein.txt: list of protein names.
  • disease.txt: list of disease names.
  • se.txt: list of side effect names.
  • drug_dict_map: a complete ID mapping between drug names and DrugBank ID.
  • protein_dict_map: a complete ID mapping between protein names and UniProt ID.
  • mat_drug_se.txt : Drug-SideEffect association matrix.
  • mat_protein_protein.txt : Protein-Protein interaction matrix.
  • mat_drug_drug.txt : Drug-Drug interaction matrix.
  • mat_protein_disease.txt : Protein-Disease association matrix.
  • mat_drug_disease.txt : Drug-Disease association matrix.
  • mat_protein_drug.txt : Protein-Drug interaction matrix.
  • mat_drug_protein.txt : Drug-Protein interaction matrix.
  • Similarity_Matrix_Drugs.txt : Drug & compound similarity scores based on chemical structures of drugs ([0,708) are drugs, the rest are compounds).
  • Similarity_Matrix_Proteins.txt : Protein similarity scores based on primary sequences of proteins.
  • mat_drug_protein_homo_protein_drug.txt: Drug-Protein interaction matrix, in which DTIs with similar drugs (i.e., drug chemical structure similarities > 0.6) or similar proteins (i.e., protein sequence similarities > 40%) were removed (see the paper).
  • mat_drug_protein_drug.txt: Drug-Protein interaction matrix, in which DTIs with drugs sharing similar drug interactions (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_sideeffect.txt: Drug-Protein interaction matrix, in which DTIs with drugs sharing similar side effects (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_disease.txt: Drug-Protein interaction matrix, in which DTIs with drugs or proteins sharing similar diseases (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_unique: Drug-Protein interaction matrix, in which known unique and non-unique DTIs were labelled as 3 and 1, respectively, the corresponding unknown ones were labelled as 2 and 0 (see the paper for the definition of unique).
  • mat_compound_protein_bindingaffinity.txt: Compound-Protein binding affinity matrix (measured by negative logarithm of Ki).

All entities (i.e., drugs, compounds, proteins, diseases and side-effects) are organized in the same order across all files. These files: drug.txt, protein.txt, disease.txt, se.txt, drug_dict_map, protein_dict_map, mat_drug_se.txt, mat_protein_protein.txt, mat_drug_drug.txt, mat_protein_disease.txt, mat_drug_disease.txt, mat_protein_drug.txt, mat_drug_protein.txt, Similarity_Matrix_Proteins.txt, are extracted from https://github.com/luoyunan/DTINet.

Contacts

If you have any questions or comments, please feel free to email Fangping Wan (wfp15[at]tsinghua[dot]org[dot]cn) and/or Jianyang Zeng (zengjy321[at]tsinghua[dot]edu[dot]cn).

Owner
PhD of Computer Science
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023