[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Related tags

Deep LearningMVFNet
Overview

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

1

Overview

We release the code of the MVFNet (Multi-View Fusion Network). The core code to implement the Multi-View Fusion Module is codes/models/modules/MVF.py.

[Mar 24, 2021] We has released the code of MVFNet.

[Dec 20, 2020] MVFNet has been accepted by AAAI 2021.

Prerequisites

All dependencies can be installed using pip:

python -m pip install -r requirements.txt

Our experiments run on Python 3.7 and PyTorch 1.5. Other versions should work but are not tested.

Download Pretrained Models

  • Download ImageNet pre-trained models
cd pretrained
sh download_imgnet.sh
  • Download K400 pre-trained models

Please refer to Model Zoo.

Data Preparation

Please refer to DATASETS.md for data preparation.

Model Zoo

Architecture Dataset T x interval Top-1 Acc. Pre-trained model Train log Test log
MVFNet-ResNet50 Kinetics-400 4x16 74.2% Download link Log link Log link
MVFNet-ResNet50 Kinetics-400 8x8 76.0% Download link Miss Log link
MVFNet-ResNet50 Kinetics-400 16x4 77.0% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 4x16 76.0% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 8x8 77.4% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 16x4 78.4% Download link Log link Log link

Testing

  • For 3 crops, 10 clips, the processing of testing
# Dataset: Kinetics-400
# Architecture: R50_8x8 [email protected]=76.0%
bash scripts/dist_test_recognizer.sh configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py ckpt_path 8 --fcn_testing

Training

This implementation supports multi-gpu, DistributedDataParallel training, which is faster and simpler.

  • For example, to train MVFNet-ResNet50 on Kinetics400 with 8 gpus, you can run:
bash scripts/dist_train_recognizer.sh configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py 8

Acknowledgements

We especially thank the contributors of the mmaction codebase for providing helpful code.

License

This repository is released under the Apache-2.0. license as found in the LICENSE file.

Citation

If you think our work is useful, please feel free to cite our paper 😆 :

@inproceedings{wu2020MVFNet,
  author    = {Wu, Wenhao and He, Dongliang and Lin, Tianwei and Li, Fu and Gan, Chuang and Ding, Errui},
  title     = {MVFNet: Multi-View Fusion Network for Efficient Video Recognition},
  booktitle = {AAAI},
  year      = {2021}
}

Contact

For any question, please file an issue or contact

Wenhao Wu: [email protected]
You might also like...
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

AdaFocus (ICCV 2021)  Adaptive Focus for Efficient Video Recognition
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Official code for
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Implementation of
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Comments
  • Is this right for the test configuration?

    Is this right for the test configuration?

    Hi I noticed your great job for action recognition from AAAI 2021. And I am trying to get the test results as yours on Kinetics400. After I have processed all the test videos to get the frames, I found that there is no annotation processing for kinetics400 test set up, neither in your configuration file. Could you share the test annotation for Kinetics400 and explain why using validation for test? https://github.com/whwu95/MVFNet/blob/ed336228ad88821ffe407a4355017acb416e4670/configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py#L58 https://github.com/whwu95/MVFNet/blob/ed336228ad88821ffe407a4355017acb416e4670/configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py#L145

    ann_file_test = 'datalist/kinetics400/val_ffmpeg_fps30.txt'
    ...
    test=dict(
            type=dataset_type,
            ann_file=ann_file_test,
            data_root=data_root_val,
            pipeline=test_pipeline, 
            test_mode=True,
            modality='RGB',
            filename_tmpl='img_{:05}.jpg'    ))
    

    Thanks a lot!

    opened by DanLuoNEU 2
  • About online recognition

    About online recognition

    Thank you for your great work. My question is that the mvf module needs to use convolution among multi-view dimensions,especially contains T dimension. If we want to apply the model into online recognition, it is difficult to store too many history frames. So how to apply it to the online recognition?Thank you.

    opened by ohheysherry66 0
Owner
Wenhao Wu
Wenhao Wu
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022