AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

Related tags

Deep LearningAdaFocus
Overview

AdaFocus (ICCV 2021)

This repo contains the official code and pre-trained models for AdaFocus.

Reference

If you find our code or paper useful for your research, please cite:

@InProceedings{Wang_2021_ICCV,
author = {Wang, Yulin and Chen, Zhaoxi and Jiang, Haojun and Song, Shiji and Han, Yizeng and Huang, Gao},
title = {Adaptive Focus for Efficient Video Recognition},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021}
}

Introduction

In this paper, we explore the spatial redundancy in video recognition with the aim to improve the computational efficiency. It is observed that the most informative region in each frame of a video is usually a small image patch, which shifts smoothly across frames. Therefore, we model the patch localization problem as a sequential decision task, and propose a reinforcement learning based approach for efficient spatially adaptive video recognition (AdaFocus). In specific, a light-weighted ConvNet is first adopted to quickly process the full video sequence, whose features are used by a recurrent policy network to localize the most task-relevant regions. Then the selected patches are inferred by a high-capacity network for the final prediction. During offline inference, once the informative patch sequence has been generated, the bulk of computation can be done in parallel, and is efficient on modern GPU devices. In addition, we demonstrate that the proposed method can be easily extended by further considering the temporal redundancy, e.g., dynamically skipping less valuable frames. Extensive experiments on five benchmark datasets, i.e., ActivityNet, FCVID, Mini-Kinetics, Something-Something V1&V2, demonstrate that our method is significantly more efficient than the competitive baselines.

Result

  • ActivityNet

  • Something-Something V1&V2

  • Visualization

Requirements

  • python 3.8
  • pytorch 1.7.0
  • torchvision 0.8.0
  • hydra 1.1.0

Datasets

  1. Please get train/test splits file for each dataset from Google Drive and put them in PATH_TO_DATASET.
  2. Download videos from following links, or contact the corresponding authors for the access. Save them to PATH_TO_DATASET/videos
  1. Extract frames using ops/video_jpg.py, the frames will be saved to PATH_TO_DATASET/frames. Minor modifications on file path are needed when extracting frames from different dataset.

Pre-trained Models

Please download pretrained weights and checkpoints from Google Drive.

  • globalcnn.pth.tar: pretrained weights for global CNN (MobileNet-v2).
  • localcnn.pth.tar: pretrained weights for local CNN (ResNet-50).
  • 128checkpoint.pth.tar: checkpoint of stage 1 for patch size 128x128.
  • 160checkpoint.pth.tar: checkpoint of stage 1 for patch size 160x128.
  • 192checkpoint.pth.tar: checkpoint of stage 1 for patch size 192x128.

Training

  • Here we take training model with patch size 128x128 on ActivityNet dataset for example.

  • All logs and checkpoints will be saved in the directory: ./outputs/YYYY-MM-DD/HH-MM-SS

  • Note that we store a set of default paramenter in conf/default.yaml which can override through command line. You can also use your own config files.

  • Before training, please initialize Global CNN and Local CNN by fine-tuning the ImageNet pre-trained models in Pytorch using the following command:

for Global CNN:

CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=0 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.01 epochs=15 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrain_glancer=true

for Local CNN:

CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=0 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.01 epochs=15 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrain_glancer=false
  • Training stage 1, pretrained weights for Global CNN and Local CNN are required:
CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=1 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.05 epochs=50 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrained_glancer=PATH_TO_CHECKPOINTS pretrained_focuser=PATH_TO_CHECKPOINTS
  • Training stage 2, a stage-1 checkpoint is required:
CUDA_VISIBLE_DEVICES=0 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=2 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.05 epochs=50 random_patch=false patch_size=128 glance_size=224 action_dim=49 eval_freq=5 consensus=gru hidden_dim=1024 resume=PATH_TO_CHECKPOINTS multiprocessing_distributed=false distributed=false
  • Training stage 3, a stage-2 checkpoint is required:
CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=3 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.005 epochs=10 random_patch=false patch_size=128 glance_size=224 action_dim=49 eval_freq=5 consensus=gru hidden_dim=1024 resume=PATH_TO_CHECKPOINTS multiprocessing_distributed=false distributed=false

Contact

If you have any question, feel free to contact the authors or raise an issue. Yulin Wang: [email protected].

Acknowledgement

We use implementation of MobileNet-v2 and ResNet from Pytorch source code. We also borrow some codes for dataset preparation from AR-Net and PPO from here.

Owner
Rainforest Wang
Rainforest Wang
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022