Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

Related tags

Deep LearningFAST-RIR
Overview

FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating roomimpulse responses (RIRs) for a given rectangular acoustic environment. Our model is inspired by StackGAN architecture. The audio examples and spectrograms of the generated RIRs are available here.

Requirements

Python3.6
Pytorch
python-dateutil
easydict
pandas
torchfile
gdown
pickle

Embedding

Each normalized embedding is created as follows: If you are using our trained model, you may need to use extra parameter Correction(CRR).

Listener Position = LP
Source Position = SP
Room Dimension = RD
Reverberation Time = T60
Correction = CRR

CRR = 0.1 if 0.5
   
    <0.6
CRR = 0.2 if T60>0.6
CRR = 0 otherwise

Embedding = ([LP_X,LP_Y,LP_Z,SP_X,SP_y,SP_Z,RD_X,RD_Y,RD_Z,(T60+CRR)] /5) + 1

   

Generete RIRs using trained model

Download the trained model using this command

source download_generate.sh

Create normalized embeddings list in pickle format. You can run following command to generate an example embedding list

 python3 example1.py

Run the following command inside code_new to generate RIRs corresponding to the normalized embeddings list. You can find generated RIRs inside code_new/Generated_RIRs

python3 main.py --cfg cfg/RIR_eval.yml --gpu 0

Range

Our trained NN-DAS is capable of generating RIRs with the following range accurately.

Room Dimension X --> 8m to 11m
Room Dimesnion Y --> 6m to 8m
Room Dimension Z --> 2.5m to 3.5m
Listener Position --> Any position within the room
Speaker Position --> Any position within the room
Reverberation time --> 0.2s to 0.7s

Training the Model

Run the following command to download the training dataset we created using a Diffuse Acoustic Simulator. You also can train the model using your dataset.

source download_data.sh

Run the following command to train the model. You can pass what GPUs to be used for training as an input argument. In this example, I am using 2 GPUs.

python3 main.py --cfg cfg/RIR_s1.yml --gpu 0,1

Related Works

  1. IR-GAN: Room Impulse Response Generator for Far-field Speech Recognition (INTERSPEECH2021)
  2. TS-RIR: Translated synthetic room impulse responses for speech augmentation (IEEE ASRU 2021)

Citations

If you use our FAST-RIR for your research, please consider citing

@article{ratnarajah2021fast,
  title={FAST-RIR: Fast neural diffuse room impulse response generator},
  author={Ratnarajah, Anton and Zhang, Shi-Xiong and Yu, Meng and Tang, Zhenyu and Manocha, Dinesh and Yu, Dong},
  journal={arXiv preprint arXiv:2110.04057},
  year={2021}
}

Our work is inspired by

@inproceedings{han2017stackgan,
Author = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas},
Title = {StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks},
Year = {2017},
booktitle = {{ICCV}},
}

If you use our training dataset generated using Diffuse Acoustic Simulator in your research, please consider citing

@inproceedings{9052932,
  author={Z. {Tang} and L. {Chen} and B. {Wu} and D. {Yu} and D. {Manocha}},  
  booktitle={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},  
  title={Improving Reverberant Speech Training Using Diffuse Acoustic Simulation},   
  year={2020},  
  volume={},  
  number={},  
  pages={6969-6973},
}
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022