This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Overview

Doctoral dissertation of Zheng Zhao

thesis

Dissertation latex compile

This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems. As an example, one can think of a family of DGPs as solutions to stochastic differential equations (SDEs), and view their regression problems as filtering and smoothing problems. Additionally, this thesis also presents a few applications from (D)GPs, such as system identification of SDEs and spectro-temporal signal analysis.

Supervisor: Prof. Simo Särkkä.

Pre-examiners: Prof. Kody J. H. Law from The University of Manchester and Prof. David Duvenaud from University of Toronto.

Opponent: Prof. Manfred Opper from University of Birmingham.

The public defence of the thesis will be streamed online on December 10, 2021 at noon (Helsinki time) via Zoom link https://aalto.zoom.us/j/67529212279. It is free and open to everyone.

More details regarding the thesis itself can be found in its title pages.

Contents

The dissertation is in ./dissertation.pdf. Feel free to download and read~~

Note that you may also find an "official" version in aaltodoc published by Aalto University. However, it destroyed the PDF links and outline, making it very painful to read in computer/ipad/inktablet. I believe that you will feel more enjoyable reading ./dissertation.pdf instead. In terms of content, the one here has no difference with the one in aaltodoc.

  1. ./dissertation.pdf. The PDF of the thesis.
  2. ./errata.md. Errata of the thesis.
  3. ./cover. This folder contains a Python script that generates the cover image.
  4. ./lectio_praecursoria. This folder contains the presentation at the public defence of the thesis.
  5. ./scripts. This folder contains Python scripts that are used to generate some of the figures in the thesis.
  6. ./thesis_latex. This folder contains the LaTeX source of the thesis. Compiling the tex files here will generate a PDF the same as with ./dissertation.pdf.

Satellite repositories

  1. https://github.com/zgbkdlm/ssdgp contains implementation of state-space deep Gaussian processes.
  2. https://github.com/zgbkdlm/tme and https://github.com/zgbkdlm/tmefs contain implementation of Taylor moment expansion method and its filter and smoother applications.

Citation

Bibtex:

@phdthesis{Zhao2021Thesis,
	title = {State-space deep Gaussian processes with applications},
	author = {Zheng Zhao},
	school = {Aalto University},
	year = {2021},
}

Plain text: Zheng Zhao. State-space deep Gaussian processes with applications. PhD thesis, Aalto University, 2021.

License

Unless otherwise stated, all rights belong to the author Zheng Zhao. This repository consists of files covered by different licenses, please check their licenses before you use them.

You are free to download, display, and print ./dissertation.pdf for your own personal use. Commercial use of it is prohibited.

Acknowledgement

I would like to thank Adrien (Monte) Corenflos, Christos Merkatas, Dennis Yeung, and Sakira Hassan for their time and efforts for reviewing and checking the languange of the thesis.

Contact

Zheng Zhao, [email protected]

Owner
Zheng Zhao
喵~~
Zheng Zhao
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022