Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Overview

Graph-to-3D

This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arxiv
Helisa Dhamo*, Fabian Manhardt*, Nassir Navab, Federico Tombari
ICCV 2021

We address the novel problem of fully-learned 3D scene generation and manipulation from scene graphs, in which a user can specify in the nodes or edges of a semantic graph what they wish to see in the 3D scene.

If you find this code useful in your research, please cite

@inproceedings{graph2scene2021,
  title={Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs},
  author={Dhamo, Helisa and Manhardt, Fabian and Navab, Nassir and Tombari, Federico},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Setup

We have tested it on Ubuntu 16.04 with Python 3.7 and PyTorch 1.2.0

Code

# clone this repository and move there
git clone https://github.com/he-dhamo/graphto3d.git
cd graphto3d
# create a conda environment and install the requirments
conda create --name g2s_env python=3.7 --file requirements.txt 
conda activate g2s_env          # activate virtual environment
# install pytorch and cuda version as tested in our work
conda install pytorch==1.2.0 cudatoolkit=10.0 -c pytorch
# more pip installations
pip install tensorboardx graphviz plyfile open3d==0.9.0.0 open3d-python==0.7.0.0 
# Set python path to current project
export PYTHONPATH="$PWD"

To evaluate shape diversity, you will need to setup the Chamfer distance. Download the extension folder from the AtlasNetv2 repo and install it following their instructions:

cd ./extension
python setup.py install

To download our checkpoints for our trained models and the Atlasnet weights used to obtain shape features:

cd ./experiments
chmod +x ./download_checkpoints.sh && ./download_checkpoints.sh

Dataset

Download the 3RScan dataset from their official site. You will need to download the following files using their script:

python download.py -o /path/to/3RScan/ --type semseg.v2.json
python download.py -o /path/to/3RScan/ --type labels.instances.annotated.v2.ply

Additionally, download the metadata for 3RScan:

cd ./GT
chmod +x ./download_metadata_3rscan.sh && ./download_metadata_3rscan.sh

Download the 3DSSG data files to the ./GT folder:

chmod +x ./download_3dssg.sh && ./download_3dssg.sh

We use the scene splits with up to 9 objects per scene from the 3DSSG paper. The relationships here are preprocessed to avoid the two-sided annotation for spatial relationships, as these can lead to paradoxes in the manipulation task. Finally, you will need our directed aligned 3D bounding boxes introduced in our project page. The following scripts downloads these data.

chmod +x ./download_postproc_3dssg.sh && ./download_postproc_3dssg.sh

Run the transform_ply.py script from this repo to obtain 3RScan scans in the correct alignment:

cd ..
python scripts/transform_ply.py --data_path /path/to/3RScan

Training

To train our main model with shared shape and layout embedding run:

python scripts/train_vaegan.py --network_type shared --exp ./experiments/shared_model --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

To run the variant with separate (disentangled) layout and shape features:

python scripts/train_vaegan.py --network_type dis --exp ./experiments/separate_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

For the 3D-SLN baseline run:

python scripts/train_vaegan.py --network_type sln --exp ./experiments/sln_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual False --with_manipulator False --with_changes False --weight_D_box 0 --with_shape_disc False

One relevant parameter is --with_feats. If set to true, this tries to read shape features directly instead of reading point clouds and feading them in AtlasNet to obtain the feature. If features are not yet to be found, it generates them during the first epoch, and reads these stored features instead of points in the next epochs. This saves a lot of time at training.

Each training experiment generates an args.json configuration file that can be used to read the right parameters during evaluation.

Evaluation

To evaluate the models run

python scripts/evaluate_vaegan.py --dataset_3RScan ../3RScan_v2/data/ --exp ./experiments/final_checkpoints/shared --with_points False --with_feats True --epoch 100 --path2atlas ./experiments/atlasnet/model_70.pth --evaluate_diversity False

Set --evaluate_diversity to True if you want to compute diversity. This takes a while, so it's disabled by default. To run the 3D-SLN baseline, or the variant with separate layout and shape features, simply provide the right experiment folder in --exp.

Acknowledgements

This repository contains code parts that are based on 3D-SLN and AtlasNet. We thank the authors for making their code available.

Owner
Helisa Dhamo
Helisa Dhamo
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022