Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Overview

Graph-to-3D

This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arxiv
Helisa Dhamo*, Fabian Manhardt*, Nassir Navab, Federico Tombari
ICCV 2021

We address the novel problem of fully-learned 3D scene generation and manipulation from scene graphs, in which a user can specify in the nodes or edges of a semantic graph what they wish to see in the 3D scene.

If you find this code useful in your research, please cite

@inproceedings{graph2scene2021,
  title={Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs},
  author={Dhamo, Helisa and Manhardt, Fabian and Navab, Nassir and Tombari, Federico},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Setup

We have tested it on Ubuntu 16.04 with Python 3.7 and PyTorch 1.2.0

Code

# clone this repository and move there
git clone https://github.com/he-dhamo/graphto3d.git
cd graphto3d
# create a conda environment and install the requirments
conda create --name g2s_env python=3.7 --file requirements.txt 
conda activate g2s_env          # activate virtual environment
# install pytorch and cuda version as tested in our work
conda install pytorch==1.2.0 cudatoolkit=10.0 -c pytorch
# more pip installations
pip install tensorboardx graphviz plyfile open3d==0.9.0.0 open3d-python==0.7.0.0 
# Set python path to current project
export PYTHONPATH="$PWD"

To evaluate shape diversity, you will need to setup the Chamfer distance. Download the extension folder from the AtlasNetv2 repo and install it following their instructions:

cd ./extension
python setup.py install

To download our checkpoints for our trained models and the Atlasnet weights used to obtain shape features:

cd ./experiments
chmod +x ./download_checkpoints.sh && ./download_checkpoints.sh

Dataset

Download the 3RScan dataset from their official site. You will need to download the following files using their script:

python download.py -o /path/to/3RScan/ --type semseg.v2.json
python download.py -o /path/to/3RScan/ --type labels.instances.annotated.v2.ply

Additionally, download the metadata for 3RScan:

cd ./GT
chmod +x ./download_metadata_3rscan.sh && ./download_metadata_3rscan.sh

Download the 3DSSG data files to the ./GT folder:

chmod +x ./download_3dssg.sh && ./download_3dssg.sh

We use the scene splits with up to 9 objects per scene from the 3DSSG paper. The relationships here are preprocessed to avoid the two-sided annotation for spatial relationships, as these can lead to paradoxes in the manipulation task. Finally, you will need our directed aligned 3D bounding boxes introduced in our project page. The following scripts downloads these data.

chmod +x ./download_postproc_3dssg.sh && ./download_postproc_3dssg.sh

Run the transform_ply.py script from this repo to obtain 3RScan scans in the correct alignment:

cd ..
python scripts/transform_ply.py --data_path /path/to/3RScan

Training

To train our main model with shared shape and layout embedding run:

python scripts/train_vaegan.py --network_type shared --exp ./experiments/shared_model --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

To run the variant with separate (disentangled) layout and shape features:

python scripts/train_vaegan.py --network_type dis --exp ./experiments/separate_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

For the 3D-SLN baseline run:

python scripts/train_vaegan.py --network_type sln --exp ./experiments/sln_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual False --with_manipulator False --with_changes False --weight_D_box 0 --with_shape_disc False

One relevant parameter is --with_feats. If set to true, this tries to read shape features directly instead of reading point clouds and feading them in AtlasNet to obtain the feature. If features are not yet to be found, it generates them during the first epoch, and reads these stored features instead of points in the next epochs. This saves a lot of time at training.

Each training experiment generates an args.json configuration file that can be used to read the right parameters during evaluation.

Evaluation

To evaluate the models run

python scripts/evaluate_vaegan.py --dataset_3RScan ../3RScan_v2/data/ --exp ./experiments/final_checkpoints/shared --with_points False --with_feats True --epoch 100 --path2atlas ./experiments/atlasnet/model_70.pth --evaluate_diversity False

Set --evaluate_diversity to True if you want to compute diversity. This takes a while, so it's disabled by default. To run the 3D-SLN baseline, or the variant with separate layout and shape features, simply provide the right experiment folder in --exp.

Acknowledgements

This repository contains code parts that are based on 3D-SLN and AtlasNet. We thank the authors for making their code available.

Owner
Helisa Dhamo
Helisa Dhamo
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022