Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Related tags

Deep LearningSLQ
Overview

SLQ

code for SLQ project, see our arXiv paper

@Article{Liu-preprint-slq,
  author     = {Meng Liu and David F. Gleich},
  journal    = {arXiv},
  title      = {Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering},
  year       = {2020},
  pages      = {2006.08569},
  volume     = {cs.SI},
  arxiv      = {http://arxiv.org/abs/2006.08569},
  mysoftware = {https://github.com/MengLiuPurdue/SLQ},
}

To run our code, simply include("SLQ.jl") This has minimal dependencies. Then to run the code on an Erdos-Renyi graph, run

using SparseArrays
# make an Erdos Renyi graph
A = triu(sprand(100,100,8/100),1)
A = max.(A,A') # symmetrize
fill!(A.nzval, 1) # set all values to 1. 
G = SLQ.graph(A) # convert an adjacency matrix into a graph
SLQ.slq_diffusion(SLQ.graph(A), 
	[1], # seed set
	 0.1, # value of gamma (regularization on seed) 
	 0.1, # value of kappa (sparsity regularization)
	 0.5, # value of rho (KKT apprx-val)
    SLQ.loss_type(1.4,0.0) # the loss-type, this is a 1.4-norm without huber)

SLQ via CVX

We need cvxpy. This can be installed in Julia's conda-forge environment. We try to do this when you include("SLQcvx.jl"). CVX does not support the q-huber penalties. This should just work.

Additional experiemtns with other dependencies

We need localgraphclustering for comparisons with CRD.

Install localgraphclustering

On my mac, with a homebrew install of Python, I just ran

pip3 install localgraphclustering --user

And then everything should just work. This will install localgraphclustering for the system python3. But then we use PyCall conda and just point it at the needed directory. Try include("CRD.jl").

Experiments

  • Visualization of image boundaries: experiment-image-boundary.jl
  • Visualization of effects in grid graph: experiment-grid-vis.jl
  • Experiment on LFR graphs: experiment-sparsity-runtime.jl and results analysis visualization-running-time.jl
  • Experiment on Facebook graphs: experiment-faebook.jland results analysis visualization-facebook-comapct.jl (this makes a lot of images) and a table to put into a latex document.
  • Experiment on DBLP and LiveJournal graphs: experiment-huge-graph.jl and results analysis visualization-huge-graph-compact.jl
  • Experiemnt on varying seeds in appendix: experiment-vary-seeds.jl
Owner
Meng Liu
Meng Liu
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022