A crash course in six episodes for software developers who want to become machine learning practitioners.

Overview

Featured code sample

tensorflow-planespotting
Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a PhD". Other samples from the "Tensorflow without a PhD" series are in this repository too.
Tensorflow, deep
        learning and modern convnets, without a PhD

Tensorflow and deep learning without a PhD series by @martin_gorner.

A crash course in six episodes for software developers who want to learn machine learning, with examples, theoretical concepts, and engineering tips, tricks and best practices to build and train the neural networks that solve your problems.

Tensorflow and deep learning without a PhD

The basics of building neural networks for software engineers. Neural weights and biases, activation functions, supervised learning and gradient descent. Tips and best practices for efficient training: learning rate decay, dropout regularisation and the intricacies of overfitting. Dense and convolutional neural networks. This session starts with low-level Tensorflow and also has a sample of high-level Tensorflow code using layers and Datasets. Code sample: MNIST handwritten digit recognition with 99% accuracy. Duration: 55 min

What is batch normalisation, how to use it appropriately and how to see if it is working or not. Code sample: MNIST handwritten digit recognition with 99.5% accuracy. Duration: 25 min

The superpower: batch normalization
Tensorflow, deep learning and recurrent neural networks, without a PhD

RNN basics: the RNN cell as a state machine, training and unrolling (backpropagation through time). More complex RNN cells: LSTM and GRU cells. Application to language modeling and generation. Tensorflow APIs for RNNs. Code sample: RNN-generated Shakespeare play. Duration: 55 min

Convolutional neural network architectures for image processing. Convnet basics, convolution filters and how to stack them. Learnings from the Inception model: modules with parallel convolutions, 1x1 convolutions. A simple modern convnet architecture: Squeezenet. Convenets for detection: the YOLO (You Look Only Once) architecture. Full-scale model training and serving with Tensorflow's Estimator API on Google Cloud ML Engine and Cloud TPUs (Tensor Processing Units). Application: airplane detection in aerial imagery. Duration: 55 min

Tensorflow, deep learning and modern convnets, without a PhD
Tensorflow, deep learning and modern RNN architectures, without a PhD

Advanced RNN architectures for natural language processing. Word embeddings, text classification, bidirectional models, sequence to sequence models for translation. Attention mechanisms. This session also explores Tensorflow's powerful seq2seq API. Applications: toxic comment detection and langauge translation. Co-author: Nithum Thain. Duration: 55 min

A neural network trained to play the game of Pong from just the pixels of the game. Uses reinforcement learning and policy gradients. The approach can be generalized to other problems involving a non-differentiable step that cannot be trained using traditional supervised learning techniques. A practical application: neural architecture search - neural networks designing neural networks. Co-author: Yu-Han Liu. Duration: 40 min

Tensorflow and deep reinforcement learning, without a PhD



Quick access to all code samples:
tensorflow-mnist-tutorial
dense and convolutional neural network tutorial
tensorflow-rnn-tutorial
recurrent neural network tutorial using temperature series
tensorflow-rl-pong
"pong" with reinforcement learning
tensorflow-planespotting
airplane detection model
conversationai: attention-tutorial
Toxic comment detection with RNNs and attention



*Disclaimer: This is not an official Google product but sample code provided for an educational purpose*
Owner
Google Cloud Platform
Google Cloud Platform
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023