DIVeR: Deterministic Integration for Volume Rendering

Related tags

Deep Learningdiver
Overview

DIVeR: Deterministic Integration for Volume Rendering

This repo contains the training and evaluation code for DIVeR.

Setup

  • python 3.8
  • pytorch 1.9.0
  • pytorch-lightning 1.2.10
  • torchvision 0.2.2
  • torch-scatter 2.0.8

Dataset

Pre-trained models

Both our real-time and offline models can be found in here.

Usage

Edit configs/config.py to configure a training and setup dataset path.

To reproduce the results of the paper, replace config.py with other configuration files under the same folder.

The 'implicit' training stage takes around 40GB GPU memory and the 'implicit-explicit' stage takes around 20GB GPU memory. Decreasing the voxel grid size by a factor of 2 results in models that require around 10GB GPU memory, which causes acceptable deduction on rendering quality.

Training

To train an explicit or implicit model:

python train.py --experiment_name=EXPERIMENT_NAME \
				--device=GPU_DEVICE\
				--resume=True # if want to resume a training

After training an implicit model, the explicit model can be trained:

python train.py --experiment_name=EXPERIMENT_NAME \
				--ft=CHECKPOINT_PATH_TO_IMPLICIT_MODEL_CHECKPOINT\
				--device=GPU_DEVICE\
				--resume=True

Post processing

After the coarse model training and the fine 'implicit-explicit' model training, we perform voxel culling:

python prune.py --checkpoint_path=PATH_TO_MODEL_CHECKPOINT_FOLDER\
				--coarse_size=COARSE_IMAGE_SIZE\
				--fine_size=FINE_IMAGE_SIZE\
				--fine_ray=1 # to get rays that pass through non-empty space, 0 otherwise\
				--batch=BATCH_SIZE\
				--device=GPU_DEVICE

which stores the max-scattered 3D alpha map under model checkpoint folder as alpha_map.pt . The rays that pass through non-empty space is also stored under model checkpoint folder. For Nerf-synthetic dataset, we directly store the rays in fine_rays.npz; for Tanks&Temples and BlendedMVS, we store the mask for each pixel under folder masks which indicates the pixels (rays) to be sampled.

To convert the checkpoint file in training to pytorch model weight or serialized weight file for real-time rendering:

python convert.py --checkpoint_path=PATH_TO_MODEL_CHECKPOINT_FILE\
				  --serialize=1 # if want to build serialized weight, 0 otherwise

The converted files will be stored under the same folder as the checkpoint file, where the pytorch model weight file is named as weight.pth, and the serialized weight file is named as serialized.pth

Evaluation

To extract the offline rendered images:

python eval.py --checkpoint_path=PATH_TO_MODEL_CHECKPOINT_FILE\
			   --output_path=PATH_TO_OUTPUT_IMAGES_FOLDER\
			   --batch=BATCH_SIZE\
			   --device=GPU_DEVICE

To extract the real-time rendered images and test the mean FPS on the test sequence:

pyrhon eval_rt.py --checkpoint_path=PATH_TO_SERIALIZED_WEIGHT_FILE
				  --output_path=PATH_TO_OUPUT_IMAGES_FOLDER\
				  --decoder={32,64} # diver32, diver64\ 
				  --device=GPU_DEVICE

Resources

Citation

@misc{wu2021diver,
      title={DIVeR: Real-time and Accurate Neural Radiance Fields with Deterministic Integration for Volume Rendering}, 
      author={Liwen Wu and Jae Yong Lee and Anand Bhattad and Yuxiong Wang and David Forsyth},
      year={2021},
      eprint={2111.10427},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
LBK 26 Dec 28, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022