DIVeR: Deterministic Integration for Volume Rendering

Related tags

Deep Learningdiver
Overview

DIVeR: Deterministic Integration for Volume Rendering

This repo contains the training and evaluation code for DIVeR.

Setup

  • python 3.8
  • pytorch 1.9.0
  • pytorch-lightning 1.2.10
  • torchvision 0.2.2
  • torch-scatter 2.0.8

Dataset

Pre-trained models

Both our real-time and offline models can be found in here.

Usage

Edit configs/config.py to configure a training and setup dataset path.

To reproduce the results of the paper, replace config.py with other configuration files under the same folder.

The 'implicit' training stage takes around 40GB GPU memory and the 'implicit-explicit' stage takes around 20GB GPU memory. Decreasing the voxel grid size by a factor of 2 results in models that require around 10GB GPU memory, which causes acceptable deduction on rendering quality.

Training

To train an explicit or implicit model:

python train.py --experiment_name=EXPERIMENT_NAME \
				--device=GPU_DEVICE\
				--resume=True # if want to resume a training

After training an implicit model, the explicit model can be trained:

python train.py --experiment_name=EXPERIMENT_NAME \
				--ft=CHECKPOINT_PATH_TO_IMPLICIT_MODEL_CHECKPOINT\
				--device=GPU_DEVICE\
				--resume=True

Post processing

After the coarse model training and the fine 'implicit-explicit' model training, we perform voxel culling:

python prune.py --checkpoint_path=PATH_TO_MODEL_CHECKPOINT_FOLDER\
				--coarse_size=COARSE_IMAGE_SIZE\
				--fine_size=FINE_IMAGE_SIZE\
				--fine_ray=1 # to get rays that pass through non-empty space, 0 otherwise\
				--batch=BATCH_SIZE\
				--device=GPU_DEVICE

which stores the max-scattered 3D alpha map under model checkpoint folder as alpha_map.pt . The rays that pass through non-empty space is also stored under model checkpoint folder. For Nerf-synthetic dataset, we directly store the rays in fine_rays.npz; for Tanks&Temples and BlendedMVS, we store the mask for each pixel under folder masks which indicates the pixels (rays) to be sampled.

To convert the checkpoint file in training to pytorch model weight or serialized weight file for real-time rendering:

python convert.py --checkpoint_path=PATH_TO_MODEL_CHECKPOINT_FILE\
				  --serialize=1 # if want to build serialized weight, 0 otherwise

The converted files will be stored under the same folder as the checkpoint file, where the pytorch model weight file is named as weight.pth, and the serialized weight file is named as serialized.pth

Evaluation

To extract the offline rendered images:

python eval.py --checkpoint_path=PATH_TO_MODEL_CHECKPOINT_FILE\
			   --output_path=PATH_TO_OUTPUT_IMAGES_FOLDER\
			   --batch=BATCH_SIZE\
			   --device=GPU_DEVICE

To extract the real-time rendered images and test the mean FPS on the test sequence:

pyrhon eval_rt.py --checkpoint_path=PATH_TO_SERIALIZED_WEIGHT_FILE
				  --output_path=PATH_TO_OUPUT_IMAGES_FOLDER\
				  --decoder={32,64} # diver32, diver64\ 
				  --device=GPU_DEVICE

Resources

Citation

@misc{wu2021diver,
      title={DIVeR: Real-time and Accurate Neural Radiance Fields with Deterministic Integration for Volume Rendering}, 
      author={Liwen Wu and Jae Yong Lee and Anand Bhattad and Yuxiong Wang and David Forsyth},
      year={2021},
      eprint={2111.10427},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022