Hybrid Neural Fusion for Full-frame Video Stabilization

Overview

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization

Project Page | Video | Paper | Google Colab

Setup

Setup environment for [Yu and Ramamoorthi 2020].

cd CVPR2020CODE_yulunliu_modified
conda create --name FuSta_CVPR2020 python=3.6
conda activate FuSta_CVPR2020
pip install -r requirements_CVPR2020.txt
./install.sh

Download pre-trained checkpoints of [Yu and Ramamoorthi 2020].

wget https://www.cmlab.csie.ntu.edu.tw/~yulunliu/FuSta/CVPR2020_ckpts.zip
unzip CVPR2020_ckpts.zip
cd ..

Setup environment for FuSta.

conda deactivate
conda create --name FuSta python=3.6
conda activate FuSta
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 -c pytorch
conda install matplotlib
conda install tensorboard
conda install scipy
conda install opencv
conda install -c conda-forge cupy cudatoolkit=10.1
pip install PyMaxflow

Running code

Calculate smoothed flow using [Yu and Ramamoorthi 2020].

conda activate FuSta_CVPR2020
cd CVPR2020CODE_yulunliu_modified
python main.py [input_frames_path] [output_frames_path] [output_warping_field_path]

e.g.

python main.py ../../NUS/Crowd/0/ NUS_results/Crowd/0/ CVPR2020_warping_field/

Run FuSta video stabilization.

conda deactivate
conda activate FuSta
cd ..
python run_FuSta.py --load [model_checkpoint_path] --input_frames_path [input_frames_path] --warping_field_path [warping_field_path] --output_path [output_frames_path] --temporal_width [temporal_width] --temporal_step [temporal_step]

e.g.

python run_FuSta.py --load NeRViS_model/checkpoint/model_epoch050.pth --input_frames_path ../NUS/Crowd/0/ --warping_field_path CVPR2020CODE_yulunliu_modified/CVPR2020_warping_field/ --output_path output/ --temporal_width 41 --temporal_step 4

Citation

@inproceedings{Liu-FuSta-2021,
    author    = {Liu, Yu-Lun and Lai, Wei-Sheng and Yang, Ming-Hsuan and Chuang, Yung-Yu and Huang, Jia-Bin}, 
    title     = {Hybrid Neural Fusion for Full-frame Video Stabilization}, 
    journal   = {arXiv preprint},
    year      = {2021}
}

Acknowledgements

Parts of the code were based on from AdaCoF-pytorch. Some functions are borrowed from softmax-splatting, RAFT, and [Yu and Ramamoorthi 2020]

TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023