Conversational text Analysis using various NLP techniques

Overview

PyConverse


Downloads Maintenance made-with-python PyPi version PyPI license Latest release

Let me try first

Installation

pip install pyconverse

Usage

Please try this notebook that demos the core functionalities: basic usage notebook

Introduction

Conversation analytics plays an increasingly important role in shaping great customer experiences across various industries like finance/contact centres etc... primarily to gain a deeper understanding of the customers and to better serve their needs. This library, PyConverse is an attempt to provide tools & methods which can be used to gain an understanding of the conversations from multiple perspectives using various NLP techniques.

Why PyConverse?

I have been doing what can be called conversational text NLP with primarily contact centre data from various domains like Financial services, Banking, Insurance etc for the past year or so, and I have not come across any interesting open-source tools that can help in understanding conversational texts as such I decided to create this library that can provide various tools and methods to analyse calls and help answer important questions/compute important metrics that usually people want to find from conversations, in contact centre data analysis settings.

Where can I use PyConverse?

The primary use case is geared towards contact centre call analytics, but most of the tools that Converse provides can be used elsewhere as well.

There’s a lot of insights hidden in every single call that happens, Converse enables you to extract those insights and compute various kinds of KPIs from the point of Operational Efficiency, Agent Effectiveness & monitoring Customer Experience etc.

If you are looking to answer questions like these:-

  1. What was the overall sentiment of the conversation that was exhibited by the speakers?
  2. Was there periods of dead air(silence periods) between the agents and customer? if so how much?
  3. Was the agent empathetic towards the customer?
  4. What was the average agent response time/average hold time?
  5. What was being said on calls?

and more... pyconverse might be of small help.

What can PyConverse do?

At the moment pyconverse can do a few things that broadly fall into these categories:-

  1. Emotion identification
  2. Empathetic statement identification
  3. Call Segmentation
  4. Topic identification from call segments
  5. Compute various types of Speaker attributes:
    1. linguistic attributes like: word counts/number of words per utterance/negations etc.
    2. Identify periods of silence & interruptions.
    3. Question identification
    4. Backchannel identification
  6. Assess the overall nature of the speaker via linguistic attributes and tell if the Speaker is:
    1. Talkative, verbally fluent
    2. Informal/Personal/social
    3. Goal-oriented or Forward/future-looking/focused on past
    4. Identify inhibitions

What Next?

  1. Improve documentation.
  2. Add more use case notebooks/examples.
  3. Improve some of the functionalities and make it more streamlined.

Built with:

Transformers Spacy Pytorch

Credits:

Note: The backchannel Utterance classification method is inspired by facebook's Unsupervised Topic Segmentation of Meetings with BERT Embeddings paper (arXiv:2106.12978 [cs.LG])

You might also like...
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Collection of NLP model explanations and accompanying analysis tools
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

Comments
  • SemanticTextSegmentation NaN With All Stop Words

    SemanticTextSegmentation NaN With All Stop Words

    When running semantic text segmentation, I found that if the input utterance line is all stop words, (i.e. "Bye. Uh huh. Yeah."), SemanticTextSegmentation._get_similarity fails with ValueError: Input contains NaN.

    I found that adding a check for nan in both embeddings could solve this problem.

    def _get_similarity(self, text1, text2):
        sentence_1 = [i.text.strip()
                      for i in nlp(text1).sents if len(i.text.split(' ')) > 1]
        sentence_2 = [i.text.strip()
                      for i in nlp(text2).sents if len(i.text.split(' ')) > 2]
        embeding_1 = model.encode(sentence_1)
        embeding_2 = model.encode(sentence_2)
        embeding_1 = np.mean(embeding_1, axis=0).reshape(1, -1)
        embeding_2 = np.mean(embeding_2, axis=0).reshape(1, -1)
    
        if np.any(np.isnan(embeding_1)) or np.any(np.isnan(embeding_2)):
                return 1
    
        sim = cosine_similarity(embeding_1, embeding_2)
        return sim
    

    I would like to have someone else look at it because I don't want to make any assumptions that the stop words should be part of the same segments.

    opened by Haowjy 1
  • Updated  lru_cache decorator.

    Updated lru_cache decorator.

    After installing and running the library pyconverse on python-3.7 or below and using the import statement it gives error in import itself. I went through the utils file and saw that the "@lru_cache" decorator was written as per the new python(i.e. 3.8+) style hence when calling in older versions(py 3.7 and below it raises a NoneType Error) as the LRU_CACHE decorator is written as -" @lru_cache() " with paranthesis for older versions . Hence made the changes. The changes made do not cause any error on the newer versions.

    opened by AkashKhamkar 0
  • Error in importing Callyzer, SpeakerStats

    Error in importing Callyzer, SpeakerStats

    When I want to load the model it's showing this error.Whether it is currently in devloped mode des

    KeyError: "[E002] Can't find factory for 'tok2vec'. This usually happens when spaCy callsnlp.create_pipewith a component name that's not built in - for example, when constructing the pipeline from a model's meta.json. If you're using a custom component, you can write to Language.factories['tok2vec'] or remove it from the ### model meta and add it vianlp.add_pipeinstead.

    opened by kalpa277 0
Releases(v0.2.0)
  • v0.2.0(Nov 21, 2021)

    First Release of PyConverse library.

    Conversational Transcript Analysis using various NLP techniques.

    1. Emotion identification
    2. Empathetic statement identification
    3. Call Segmentation
    4. Topic identification from call segments
    5. Compute various types of Speaker attributes:
      • linguistic attributes like : word counts/number of words per utterance/negations etc
      • Identify periods of silence & interruptions.
      • Question identification
      • Backchannel identification
    6. Assess the overall nature of the speaker via linguistic attributes and tell if the Speaker is:
      • Talkative, verbally fluent
      • Informal/Personal/social
      • Goal-oriented or Forward/future-looking/focused on past
      • Identify inhibitions
    Source code(tar.gz)
    Source code(zip)
Owner
Rita Anjana
ML engineer
Rita Anjana
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
DiSECt: Differentiable Simulator for Robotic Cutting

DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable

NVIDIA Research Projects 73 Oct 29, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022